Given a connected undirected graph G=(V,E), the Minimum Branch Vertices Problem (MBVP) asks for a spanning tree of G with the minimum number of vertices having degree greater than two in the tree. These are called branch vertices. This problem, with applications in the context of optical networks, is known to be NP-hard. We model the MBVP as an integer linear program, with undirected variables, we derive valid inequalities and we prove that some of these are facet defining. We then develop a hybrid formulation containing undirected and directed variables. Both models are solved with branch-and-cut. Comparative computational results show the superiority of the hybrid formulation.

A branch-and-cut algorithm for the minimum branch vertices spanning tree problem

SILVESTRI, SELENE;CERULLI, Raffaele
2017-01-01

Abstract

Given a connected undirected graph G=(V,E), the Minimum Branch Vertices Problem (MBVP) asks for a spanning tree of G with the minimum number of vertices having degree greater than two in the tree. These are called branch vertices. This problem, with applications in the context of optical networks, is known to be NP-hard. We model the MBVP as an integer linear program, with undirected variables, we derive valid inequalities and we prove that some of these are facet defining. We then develop a hybrid formulation containing undirected and directed variables. Both models are solved with branch-and-cut. Comparative computational results show the superiority of the hybrid formulation.
File in questo prodotto:
File Dimensione Formato  
CIRRELT-2015-60.pdf

accesso aperto

Descrizione: Articolo principale
Tipologia: Documento in Post-print (versione successiva alla peer review e accettata per la pubblicazione)
Licenza: Creative commons
Dimensione 1.19 MB
Formato Adobe PDF
1.19 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11386/4683050
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 14
  • ???jsp.display-item.citation.isi??? 12
social impact