Gelling solution parameters are some of the most important variables in ionotropic gelation and consequently influence the technological characteristics of the product. To date, only a few studies have focused on the simultaneous use of multiple cations as gelling agents. With the aim to deeply explore this possibility, in this research we investigated the effect of two divalent cations (Ca2+ and Zn2+) on alginate beads formation and properties. Alginate beads containing prednisolone (P) as model drug were prepared by prilling technique. The main critical variables of the ionotropic gelation process i.e. composition of the aqueous feed solutions (sodium alginate and prednisolone concentration) and cross-linking conditions (Ca2+, Zn2+ or Ca2+ + Zn2+), were studied. The obtained beads were characterized and their in vitro release performances were assessed in conditions simulating the gastrointestinal environment. Results evidenced a synergistic effect of the two cations, affecting positively both the encapsulation efficiency and the ability of the alginate polymeric matrix to control the drug release. A Ca2+/Zn2+ ratio of 4:1, in fact, exploited the Ca2+ ability of establish quicker electrostatic interactions with guluronic groups of alginate and the Zn2+ ability to establish covalent-like bonds with carboxylate groups of both guluronic and mannuronic moieties of alginate.

Synergistic effect of divalent cations in improving technological properties of cross-linked alginate beads

CERCIELLO, ANDREA;DEL GAUDIO, Pasquale;GRANATA, VERONICA;SALA, Marina;AQUINO, Rita Patrizia;RUSSO, Paola
2017

Abstract

Gelling solution parameters are some of the most important variables in ionotropic gelation and consequently influence the technological characteristics of the product. To date, only a few studies have focused on the simultaneous use of multiple cations as gelling agents. With the aim to deeply explore this possibility, in this research we investigated the effect of two divalent cations (Ca2+ and Zn2+) on alginate beads formation and properties. Alginate beads containing prednisolone (P) as model drug were prepared by prilling technique. The main critical variables of the ionotropic gelation process i.e. composition of the aqueous feed solutions (sodium alginate and prednisolone concentration) and cross-linking conditions (Ca2+, Zn2+ or Ca2+ + Zn2+), were studied. The obtained beads were characterized and their in vitro release performances were assessed in conditions simulating the gastrointestinal environment. Results evidenced a synergistic effect of the two cations, affecting positively both the encapsulation efficiency and the ability of the alginate polymeric matrix to control the drug release. A Ca2+/Zn2+ ratio of 4:1, in fact, exploited the Ca2+ ability of establish quicker electrostatic interactions with guluronic groups of alginate and the Zn2+ ability to establish covalent-like bonds with carboxylate groups of both guluronic and mannuronic moieties of alginate.
File in questo prodotto:
File Dimensione Formato  
Synergistic effect of divalent cations in improving technological properties of cross-linked alginate beads.pdf

non disponibili

Descrizione: Manuscript - Synergistic effect of divalent cations in improving technological properties of cross-linked alginate beads
Tipologia: Documento in Post-print (versione successiva alla peer review e accettata per la pubblicazione)
Licenza: NON PUBBLICO - Accesso privato/ristretto
Dimensione 2.31 MB
Formato Adobe PDF
2.31 MB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: http://hdl.handle.net/11386/4683156
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? 10
  • Scopus 30
  • ???jsp.display-item.citation.isi??? 30
social impact