Several important applications rely today on the detection of polarized light, as demonstrated by the wide range of sensing devices exploited over the years. Nevertheless, the miniaturization of such systems has been little explored. In this work, a possible solution towards the direct integration of the sensing optics within an electronic device has been established, utilizing a wire-grid polarizer in conjunction with a photodetector realized with organic semiconductors. The optical and electronic properties of the device have been studied and optimized using physically based numerical simulations. Consequently, a proof of concept of the photodetector has been demonstrated, having a polarization extinction ratio of 50 at a wavelength of 550 nm.
Simulation and fabrication of polarized organic photodiodes
FALCO, ANIELLO;LUGLI , PAOLO;BEZZECCHERI, EMANUELE;LIGUORI, ROSALBA;RUBINO, Alfredo
2017
Abstract
Several important applications rely today on the detection of polarized light, as demonstrated by the wide range of sensing devices exploited over the years. Nevertheless, the miniaturization of such systems has been little explored. In this work, a possible solution towards the direct integration of the sensing optics within an electronic device has been established, utilizing a wire-grid polarizer in conjunction with a photodetector realized with organic semiconductors. The optical and electronic properties of the device have been studied and optimized using physically based numerical simulations. Consequently, a proof of concept of the photodetector has been demonstrated, having a polarization extinction ratio of 50 at a wavelength of 550 nm.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.