Exploiting the Bachet weight decomposition theorem, a new two-dimensional filter is designed. The filter can be adapted to different multimedia applications, but in this work it is specifically targeted to image processing applications. The method allows emulating standard 32 bit floating point multipliers using a chain of fixed point adders and a logic unit to manage the exponent, in order to obtain IEEE-754 compliant results. The proposed design allows more compact implementation of a floating point filtering architecture when a fixed set of coefficients and a fixed range of input values are used. The elaboration of the data proceeds in raster-scan order and is capable of directly processing the data coming from the acquisition source thanks to a careful organization of the memories, avoiding the implementation of frame buffers or any aligning circuitry. The proposed architecture shows state-of-the-art performances in terms of critical path delay, obtaining a critical path delay of 4.7 ns when implemented on a Xilinx Virtex 7 FPGA board.

Design of a Convolutional Two-Dimensional Filter in FPGA for Image Processing Applications

LICCIARDO, GIAN DOMENICO;CAPPETTA, CARMINE;DI BENEDETTO, LUIGI
2017-01-01

Abstract

Exploiting the Bachet weight decomposition theorem, a new two-dimensional filter is designed. The filter can be adapted to different multimedia applications, but in this work it is specifically targeted to image processing applications. The method allows emulating standard 32 bit floating point multipliers using a chain of fixed point adders and a logic unit to manage the exponent, in order to obtain IEEE-754 compliant results. The proposed design allows more compact implementation of a floating point filtering architecture when a fixed set of coefficients and a fixed range of input values are used. The elaboration of the data proceeds in raster-scan order and is capable of directly processing the data coming from the acquisition source thanks to a careful organization of the memories, avoiding the implementation of frame buffers or any aligning circuitry. The proposed architecture shows state-of-the-art performances in terms of critical path delay, obtaining a critical path delay of 4.7 ns when implemented on a Xilinx Virtex 7 FPGA board.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11386/4684218
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 8
  • ???jsp.display-item.citation.isi??? 7
social impact