Increasing share of variable renewable energy sources (VRESs) with the aim of tackling climate changes impose several techno-economic challenges to power system operation. VRESs reduce the available flexibility by displacing existing flexible units due to their priority in dispatch and simultaneously enhance the need for additional flexibility due to their uncertain nature. In this light, the system is faced with a flexibility gap. One way to cover the created flexibility gap is the incorporation of emerging flexible resources into power systems operation. On this basis, this paper proposes a comprehensive flexible generation portfolio including bulk energy storages (BESs), plug-in electric vehicle parking lots (PEV PLs), and demand response (DR) programs. A stochastic market-based model is proposed to coordinate the interactions among these flexibility providers considering different sets of uncertainty, such as wind power generation and PEV owner's behavior. Finally, various generation mixtures are prioritized based on the system operator's economic, technical, and environmental desires to provide a guideline to opt the most effective generation mixture in the context of flexibility promotion.

Evaluating the benefits of coordinated emerging flexible resources in electricity markets

SIANO, PIERLUIGI
2017

Abstract

Increasing share of variable renewable energy sources (VRESs) with the aim of tackling climate changes impose several techno-economic challenges to power system operation. VRESs reduce the available flexibility by displacing existing flexible units due to their priority in dispatch and simultaneously enhance the need for additional flexibility due to their uncertain nature. In this light, the system is faced with a flexibility gap. One way to cover the created flexibility gap is the incorporation of emerging flexible resources into power systems operation. On this basis, this paper proposes a comprehensive flexible generation portfolio including bulk energy storages (BESs), plug-in electric vehicle parking lots (PEV PLs), and demand response (DR) programs. A stochastic market-based model is proposed to coordinate the interactions among these flexibility providers considering different sets of uncertainty, such as wind power generation and PEV owner's behavior. Finally, various generation mixtures are prioritized based on the system operator's economic, technical, and environmental desires to provide a guideline to opt the most effective generation mixture in the context of flexibility promotion.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: http://hdl.handle.net/11386/4684397
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 30
  • ???jsp.display-item.citation.isi??? 30
social impact