Magnetic Resonance Imaging (MRI) has shown promising results in diagnosing myocarditis that can be qualitatively observed as enhanced pixels on the cardiac muscles images. In this paper, a quantitative MRI Myocarditis Analysis is proposed. Analysis consists in introducing a myocarditis index, defined as the ratio between enhanced pixels, representing an inflammation, and the total pixels of myocardial muscle. In order to recognize and quantify enhanced pixels, a PCA-based recognition algorithm is used. The algorithm, implemented in Matlab, was tested by examining a group of 12 patients, referred to MRI with presumptive, clinical diagnosis of myocarditis. To assess intra- and interobserver variability, two observers blindly analyzed data related to the 12 patients by delimiting myocardial region and selecting enhanced pixels. After 10 days the same observers redid the analysis. The obtained myocarditis indexes were compared to an ordinal variable (values in the 1 - 5 range) that represented the blind assessment of myocarditis seriousness given by two radiologists on the base of the patient case histories. Results show that there is a significant correlation (P < 0:001; r = 0:96) between myocarditis indexes and the radiologists' clinical judgments. Furthermore, a good intraobserver and interobserver reproducibility was obtained.

Quantitative MRI myocarditis analysis by a PCA- based object recognition algorithm

ROMANO, Rocco
;
ACERNESE, Fausto;GIORDANO, Gerardo;BARONE, Fabrizio
2016

Abstract

Magnetic Resonance Imaging (MRI) has shown promising results in diagnosing myocarditis that can be qualitatively observed as enhanced pixels on the cardiac muscles images. In this paper, a quantitative MRI Myocarditis Analysis is proposed. Analysis consists in introducing a myocarditis index, defined as the ratio between enhanced pixels, representing an inflammation, and the total pixels of myocardial muscle. In order to recognize and quantify enhanced pixels, a PCA-based recognition algorithm is used. The algorithm, implemented in Matlab, was tested by examining a group of 12 patients, referred to MRI with presumptive, clinical diagnosis of myocarditis. To assess intra- and interobserver variability, two observers blindly analyzed data related to the 12 patients by delimiting myocardial region and selecting enhanced pixels. After 10 days the same observers redid the analysis. The obtained myocarditis indexes were compared to an ordinal variable (values in the 1 - 5 range) that represented the blind assessment of myocarditis seriousness given by two radiologists on the base of the patient case histories. Results show that there is a significant correlation (P < 0:001; r = 0:96) between myocarditis indexes and the radiologists' clinical judgments. Furthermore, a good intraobserver and interobserver reproducibility was obtained.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: http://hdl.handle.net/11386/4685442
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 1
  • ???jsp.display-item.citation.isi??? 1
social impact