Human sphingomyelin synthase 1 (hSMS1) is the last enzyme for sphingomyelin (SM) biosynthesis. It has been discovered that in different human tumor tissues the SM levels are lower compared to normal tissues and the activation of hSMS1, to restore the normal levels of SM, inhibits cell cycle proliferation of cancer cells. Since the importance of SM and other lipid metabolism genes in the malignant transformation, we decided to explore the hSMS1 mechanism of action. Enzymes capable to regulate the formation of lipids are therefore of paramount importance. Here we present a computational study on sphingomyelin synthases hSMS1. The full structure of the enzyme was obtained by means of homology and ab initio techniques. Further molecular dynamics and docking studies permitted to identify putative binding sites and to identify the key residues for binding. This article is part of a Special Issue entitled: Membrane Lipid Therapy: Drugs Targeting Biomembranes edited by Pablo Escríba-Ruíz.

Computational study on human sphingomyelin synthase 1 (hSMS1)

PIOTTO PIOTTO, Stefano;SESSA, LUCIA;IANNELLI, Pio;CONCILIO, Simona
2017-01-01

Abstract

Human sphingomyelin synthase 1 (hSMS1) is the last enzyme for sphingomyelin (SM) biosynthesis. It has been discovered that in different human tumor tissues the SM levels are lower compared to normal tissues and the activation of hSMS1, to restore the normal levels of SM, inhibits cell cycle proliferation of cancer cells. Since the importance of SM and other lipid metabolism genes in the malignant transformation, we decided to explore the hSMS1 mechanism of action. Enzymes capable to regulate the formation of lipids are therefore of paramount importance. Here we present a computational study on sphingomyelin synthases hSMS1. The full structure of the enzyme was obtained by means of homology and ab initio techniques. Further molecular dynamics and docking studies permitted to identify putative binding sites and to identify the key residues for binding. This article is part of a Special Issue entitled: Membrane Lipid Therapy: Drugs Targeting Biomembranes edited by Pablo Escríba-Ruíz.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11386/4688364
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? 6
  • Scopus 12
  • ???jsp.display-item.citation.isi??? 10
social impact