Electrochemotherapy (ECT) is a clinical procedure for the local treatment of solid tumors, which combines the application of pulsed electric fields (PEFs) and chemotherapeutic drugs, by exploiting the PEF-induced membrane permeabilization (electroporation, EP). The ESOPE pulsing protocol (8 pulses with 100 μs duration and 1 kV/cm electric field strength, given at 1 Hz or 5 kHz as repetition rate) is the only protocol approved for application on human patients and is currently used in the clinical practice. Moving from an experimental study comparing the efficacy of ESOPE to that of modified PEF protocol with lower electric field intensity and higher pulse number, in this paper an electrophysiological model is used to provide theoretical support to the experimental results. The pore density and the transmembrane voltage time behavior at the upper pole of a single spherical cell are considered, in order to assess the EP effect of the applied pulse train, considered as boundary condition in the field based solution of the problem. The simulation results highlight that, 40 pulses 750 V/cm is a good candidate as ESOPE equivalent protocol.

FEM-based numerical simulation supporting experimentally tested Electrochemotherapy protocols

LAMBERTI, PATRIZIA;TUCCI, Vincenzo;
2017-01-01

Abstract

Electrochemotherapy (ECT) is a clinical procedure for the local treatment of solid tumors, which combines the application of pulsed electric fields (PEFs) and chemotherapeutic drugs, by exploiting the PEF-induced membrane permeabilization (electroporation, EP). The ESOPE pulsing protocol (8 pulses with 100 μs duration and 1 kV/cm electric field strength, given at 1 Hz or 5 kHz as repetition rate) is the only protocol approved for application on human patients and is currently used in the clinical practice. Moving from an experimental study comparing the efficacy of ESOPE to that of modified PEF protocol with lower electric field intensity and higher pulse number, in this paper an electrophysiological model is used to provide theoretical support to the experimental results. The pore density and the transmembrane voltage time behavior at the upper pole of a single spherical cell are considered, in order to assess the EP effect of the applied pulse train, considered as boundary condition in the field based solution of the problem. The simulation results highlight that, 40 pulses 750 V/cm is a good candidate as ESOPE equivalent protocol.
2017
978-1-5090-5052-9
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11386/4688742
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 2
  • ???jsp.display-item.citation.isi??? 0
social impact