A spherical excitable cell immersed in an electrolyte and subjected to an electric field is considered to study its behavior for Electro-Chemotherapy Treatments (ECT). The total volume is discretized with a three-dimensional lattice to which an electrical network, modeling both the passive and linear behavior of the external electrolyte and of the cytosol than the complex behavior of the ionic fluxes through the cell membrane, is associated. The Electroporation Phenomenon (EP) is considered by modeling the electrically induced pores with a voltage controlled current source governed by the dynamic of the pore density, N, and the current in a single pore. The physiological Action Potential (AP) of a Normal Rat Kidney (NRK) cell is reproduced and the EP is analyzed by looking at the transmembrane voltage (TMV) of the cell exposed to a trapezoidal Pulsed Electric Field (PEF) with a duration of 100us, a rise/fall time of 4us and amplitude of 750V/cm.

A coarse 3D lattice network modeling electroporation phenomenon in an excitable cell

LAMBERTI, PATRIZIA;EGIZIANO, Luigi;TUCCI, Vincenzo
2017

Abstract

A spherical excitable cell immersed in an electrolyte and subjected to an electric field is considered to study its behavior for Electro-Chemotherapy Treatments (ECT). The total volume is discretized with a three-dimensional lattice to which an electrical network, modeling both the passive and linear behavior of the external electrolyte and of the cytosol than the complex behavior of the ionic fluxes through the cell membrane, is associated. The Electroporation Phenomenon (EP) is considered by modeling the electrically induced pores with a voltage controlled current source governed by the dynamic of the pore density, N, and the current in a single pore. The physiological Action Potential (AP) of a Normal Rat Kidney (NRK) cell is reproduced and the EP is analyzed by looking at the transmembrane voltage (TMV) of the cell exposed to a trapezoidal Pulsed Electric Field (PEF) with a duration of 100us, a rise/fall time of 4us and amplitude of 750V/cm.
978-1-5090-5052-9
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: http://hdl.handle.net/11386/4688744
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 3
  • ???jsp.display-item.citation.isi??? 0
social impact