We study numerically a two-dimensional random-bond Ising model where frustration can be tuned by varying the fraction a of antiferromagnetic coupling constants. At low temperatures the model exhibits a phase with ferromagnetic order for sufficiently small values of a, aaa, an antiferromagnetic phase exists. After a deep quench from high temperatures, slow evolution is observed for any value of a. We show that different amounts of frustration, tuned by a, affect the dynamical properties in a highly nontrivial way. In particular, the kinetics is logarithmically slow in phases with ferromagnetic or antiferromagnetic order, whereas evolution is faster, i.e., algebraic, when spin-glass order is prevailing. An interpretation is given in terms of the different nature of phase space.
Equilibrium structure and off-equilibrium kinetics of a magnet with tunable frustration
CORBERI, Federico;
2017
Abstract
We study numerically a two-dimensional random-bond Ising model where frustration can be tuned by varying the fraction a of antiferromagnetic coupling constants. At low temperatures the model exhibits a phase with ferromagnetic order for sufficiently small values of a, aaa, an antiferromagnetic phase exists. After a deep quench from high temperatures, slow evolution is observed for any value of a. We show that different amounts of frustration, tuned by a, affect the dynamical properties in a highly nontrivial way. In particular, the kinetics is logarithmically slow in phases with ferromagnetic or antiferromagnetic order, whereas evolution is faster, i.e., algebraic, when spin-glass order is prevailing. An interpretation is given in terms of the different nature of phase space.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.