In this paper we give sufficient conditions on $\alpha \ge 0$ and $c\in \R$ ensuring that the space of test functions $C_c^\infty(\R^N)$ is a core for the operator $$L_0u=(1+|x|^\alpha )\Delta u+\frac{c}{|x|^2}u=:Lu+\frac{c}{|x|^2}u,$$ and $L_0$ with a suitable domain generates a quasi-contractive and positivity preserving $C_0$-semigroup in $L^p(\R^N),\,1<p<\infty$. The proofs are based on some $L^p$-weighted Hardy's inequality and perturbation techniques.

Elliptic operators with unbounded diffusion coefficients perturbed by inverse square potentials in Lp-spaces

RHANDI, Abdelaziz;GREGORIO, FEDERICA
2016-01-01

Abstract

In this paper we give sufficient conditions on $\alpha \ge 0$ and $c\in \R$ ensuring that the space of test functions $C_c^\infty(\R^N)$ is a core for the operator $$L_0u=(1+|x|^\alpha )\Delta u+\frac{c}{|x|^2}u=:Lu+\frac{c}{|x|^2}u,$$ and $L_0$ with a suitable domain generates a quasi-contractive and positivity preserving $C_0$-semigroup in $L^p(\R^N),\,1
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11386/4690143
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 6
  • ???jsp.display-item.citation.isi??? 6
social impact