We numerically solved the boundary-value problem for Tamm waves (which may also be classified as Uller–Zenneck waves here) guided by the planar interface of a homogeneous isotropic dissipative dielectric (HIDD) material and a periodically multilayered isotropic dielectric material. The HIDD material was chosen to be VO2, which, at optical wavelengths, has a temperature-dependent refractive index with a hysteresis feature, i.e., the temperature-dependence of its refractive index varies depending upon whether the temperature is increasing or decreasing. A numerical code was implemented to extract solutions of the dispersion equation at a fixed wavelength for both p- and s-polarization states over the temperature range [50,80]°C. A multitude of Tamm waves of both linear polarization states were found, demonstrating a clear demarcation of the heating and cooling phases in terms of wavenumbers and propagation distances. Thereby, the signatures of thermal hysteresis in Tamm-wave propagation were revealed.

Signatures of thermal hysteresis in Tamm-wave propagation

CHIADINI, FRANCESCO;SCAGLIONE, Antonio;
2017-01-01

Abstract

We numerically solved the boundary-value problem for Tamm waves (which may also be classified as Uller–Zenneck waves here) guided by the planar interface of a homogeneous isotropic dissipative dielectric (HIDD) material and a periodically multilayered isotropic dielectric material. The HIDD material was chosen to be VO2, which, at optical wavelengths, has a temperature-dependent refractive index with a hysteresis feature, i.e., the temperature-dependence of its refractive index varies depending upon whether the temperature is increasing or decreasing. A numerical code was implemented to extract solutions of the dispersion equation at a fixed wavelength for both p- and s-polarization states over the temperature range [50,80]°C. A multitude of Tamm waves of both linear polarization states were found, demonstrating a clear demarcation of the heating and cooling phases in terms of wavenumbers and propagation distances. Thereby, the signatures of thermal hysteresis in Tamm-wave propagation were revealed.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11386/4692582
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 3
  • ???jsp.display-item.citation.isi??? 2
social impact