We report the synthesis of a luminescent N-salicylidene aniline derivative, N-salicylidene-4-amino-2-methylbenzotriazole (1), and the study of its polymorphism and photophysical properties. Three phases showing yellow (1-Y), orange (1-O), and red (1-R) fluorescence have been isolated and characterized by thermal and single crystal X-ray analysis. The photoluminescence results from excited-state intramolecular proton transfer process and the quantum yield is strongly dependent on polymorphism (Φ1-Y= 0.87, Φ1-O= 0.11, Φ1-R= 0.028). The poorly emitting 1-R can be easily prepared, converted to the bright 1-Y by grinding, and reverted to 1-R through melting and annealing, giving rise to a luminescence on.off mechano-responsive cycle. The different photophysical properties are explained with the variable π-overlap and molecular conformation changes in the three polymorphs, characterized by a very similar crystal packing. By DFT calculations, the absorption properties were explained as dependent on the torsion angle between the two planar portions of the molecule, which affects the equilibrium between enol and keto forms in the ground state.

On-off mechano-responsive switching of ESIPT luminescence in polymorphic n-salicylidene-4-amino-2-methylbenzotriazole

PIOTTO PIOTTO, Stefano;CONCILIO, Simona;
2017-01-01

Abstract

We report the synthesis of a luminescent N-salicylidene aniline derivative, N-salicylidene-4-amino-2-methylbenzotriazole (1), and the study of its polymorphism and photophysical properties. Three phases showing yellow (1-Y), orange (1-O), and red (1-R) fluorescence have been isolated and characterized by thermal and single crystal X-ray analysis. The photoluminescence results from excited-state intramolecular proton transfer process and the quantum yield is strongly dependent on polymorphism (Φ1-Y= 0.87, Φ1-O= 0.11, Φ1-R= 0.028). The poorly emitting 1-R can be easily prepared, converted to the bright 1-Y by grinding, and reverted to 1-R through melting and annealing, giving rise to a luminescence on.off mechano-responsive cycle. The different photophysical properties are explained with the variable π-overlap and molecular conformation changes in the three polymorphs, characterized by a very similar crystal packing. By DFT calculations, the absorption properties were explained as dependent on the torsion angle between the two planar portions of the molecule, which affects the equilibrium between enol and keto forms in the ground state.
File in questo prodotto:
File Dimensione Formato  
On–Off Mechano-responsive Switching.pdf

non disponibili

Descrizione: Manuscript
Tipologia: Versione editoriale (versione pubblicata con il layout dell'editore)
Licenza: NON PUBBLICO - Accesso privato/ristretto
Dimensione 2.13 MB
Formato Adobe PDF
2.13 MB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11386/4699269
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 38
  • ???jsp.display-item.citation.isi??? 37
social impact