We study the Poincaré problem for linear uniformly parabolic operator P with discontinuous coefficients. The boundary operator is defined in terms of oblique derivative with respect to a vector field l which points outward the domain or becomes tangential to the boundary on a set of possibly positive measure. A’priori estimates and unique strong solvability are obtained in W^(2,1)_p(Q) for all p\in (1,\infty).

W^{2,1}_p-solvability for the parabolic Poincarè problem,

SOFTOVA PALACHEVA, Lyoubomira
2004-01-01

Abstract

We study the Poincaré problem for linear uniformly parabolic operator P with discontinuous coefficients. The boundary operator is defined in terms of oblique derivative with respect to a vector field l which points outward the domain or becomes tangential to the boundary on a set of possibly positive measure. A’priori estimates and unique strong solvability are obtained in W^(2,1)_p(Q) for all p\in (1,\infty).
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11386/4701553
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 10
  • ???jsp.display-item.citation.isi??? 11
social impact