We consider the Cauchy-Dirichlet problem for linear divergence form parabolic operators in bounded reifenberg-flat domains. We obtain boundedness of the maximal operator in the generalized Morrey spaces. This permits us to obtain Calderon-Zygmund type estimate for the gradient of the weak solution of the problem.
Generalized Morrey estimates for the gradient of divergence form parabolic operators with discontinuous coefficients
	
	
	
		
		
		
		
		
	
	
	
	
	
	
	
	
		
		
		
		
		
			
			
			
		
		
		
		
			
			
				
				
					
					
					
					
						
						
							
							
						
					
				
				
				
				
				
				
				
				
				
				
				
			
			
		
			
			
				
				
					
					
					
					
						
							
						
						
					
				
				
				
				
				
				
				
				
				
				
				
			
			
		
		
		
		
	
SOFTOVA Lyoubomira
	
		
		
	
			2015
Abstract
We consider the Cauchy-Dirichlet problem for linear divergence form parabolic operators in bounded reifenberg-flat domains. We obtain boundedness of the maximal operator in the generalized Morrey spaces. This permits us to obtain Calderon-Zygmund type estimate for the gradient of the weak solution of the problem.File in questo prodotto:
	
	
	
    
	
	
	
	
	
	
	
	
		
			
				
			
		
		
	
	
	
	
		
		
			| File | Dimensione | Formato | |
|---|---|---|---|
| 
									
										
										
										
										
											
												
												
												    
												
											
										
									
									
										
										
											31_2015_JDE_GulSf.pdf
										
																				
									
										
											 accesso aperto 
											Tipologia:
											Documento in Post-print (versione successiva alla peer review e accettata per la pubblicazione)
										 
									
									
									
									
										
											Licenza:
											
											
												Creative commons
												
												
													
													
													
												
												
											
										 
									
									
										Dimensione
										338.24 kB
									 
									
										Formato
										Adobe PDF
									 
										
										
								 | 
								338.24 kB | Adobe PDF | Visualizza/Apri | 
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.


