The investigation of the BiCuOCh (Ch = S, Se and Te) semiconductor family for thermoelectric or photovoltaic materials is a topic of increasing research interest. These materials can also be considered for photochemical water splitting if one representative having a bandgap, Eg, at around 2 eV can be developed. With this aim, we simulated the solid solutions Bi1-xRExCuOS (RE = Y, La, Gd and Lu) from pure BiCuOS (Eg∼ 1.1 eV) to pure RECuOS compositions (Eg∼ 2.9 eV) by DFT calculations based on the HSE06 range-separated hybrid functional with the inclusion of spin-orbit coupling. Starting from the thermodynamic stability of the solid solution, several properties were computed for each system including bandgaps, dielectric constants, effective masses and exciton binding energies. We discussed the variation of these properties based on the relative organization of Bi and RE atoms in their common sublattice to offer a physical understanding of the influence of the RE doping of BiCuOS. Some compositions were found to give appropriate properties for water splitting applications. Furthermore, we found that at low RE fractions the transport properties of BiCuOS are improved that can find applications beyond water splitting.

Ab initio assessment of Bi1-xRExCuOS (RE = La, Gd, Y, Lu) solid solutions as a semiconductor for photochemical water splitting

Cavallo, Luigi;
2017

Abstract

The investigation of the BiCuOCh (Ch = S, Se and Te) semiconductor family for thermoelectric or photovoltaic materials is a topic of increasing research interest. These materials can also be considered for photochemical water splitting if one representative having a bandgap, Eg, at around 2 eV can be developed. With this aim, we simulated the solid solutions Bi1-xRExCuOS (RE = Y, La, Gd and Lu) from pure BiCuOS (Eg∼ 1.1 eV) to pure RECuOS compositions (Eg∼ 2.9 eV) by DFT calculations based on the HSE06 range-separated hybrid functional with the inclusion of spin-orbit coupling. Starting from the thermodynamic stability of the solid solution, several properties were computed for each system including bandgaps, dielectric constants, effective masses and exciton binding energies. We discussed the variation of these properties based on the relative organization of Bi and RE atoms in their common sublattice to offer a physical understanding of the influence of the RE doping of BiCuOS. Some compositions were found to give appropriate properties for water splitting applications. Furthermore, we found that at low RE fractions the transport properties of BiCuOS are improved that can find applications beyond water splitting.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: http://hdl.handle.net/11386/4701857
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? 3
  • Scopus 20
  • ???jsp.display-item.citation.isi??? 19
social impact