Given a network represented by a graph (Formula presented.), we consider a dynamical process of influence diffusion in G that evolves as follows: Initially only the nodes of a given (Formula presented.) are influenced; subsequently, at each round, the set of influenced nodes is augmented by all the nodes in the network that have a sufficiently large number of already influenced neighbors. The question is to determine a small subset of nodes S (a target set) that can influence the whole network. This is a widely studied problem that abstracts many phenomena in the social, economic, biological, and physical sciences. It is known that the above optimization problem is hard to approximate within a factor of (Formula presented.), for any (Formula presented.). In this paper, we present a fast and surprisingly simple algorithm that exhibits the following features: (1) when applied to trees, cycles, or complete graphs, it always produces an optimal solution (i.e, a minimum size target set); (2) when applied to arbitrary networks, it always produces a solution of cardinality which improves on previously known upper bounds; (3) when applied to real-life networks, it always produces solutions that substantially outperform the ones obtained by previously published algorithms (for which no proof of optimality or performance guarantee is known in any class of graphs).

Discovering Small Target Sets in Social Networks: A Fast and Effective Algorithm

Gargano, Luisa;MECCHIA, MARCO;Rescigno, Adele A.;Vaccaro, Ugo
2018-01-01

Abstract

Given a network represented by a graph (Formula presented.), we consider a dynamical process of influence diffusion in G that evolves as follows: Initially only the nodes of a given (Formula presented.) are influenced; subsequently, at each round, the set of influenced nodes is augmented by all the nodes in the network that have a sufficiently large number of already influenced neighbors. The question is to determine a small subset of nodes S (a target set) that can influence the whole network. This is a widely studied problem that abstracts many phenomena in the social, economic, biological, and physical sciences. It is known that the above optimization problem is hard to approximate within a factor of (Formula presented.), for any (Formula presented.). In this paper, we present a fast and surprisingly simple algorithm that exhibits the following features: (1) when applied to trees, cycles, or complete graphs, it always produces an optimal solution (i.e, a minimum size target set); (2) when applied to arbitrary networks, it always produces a solution of cardinality which improves on previously known upper bounds; (3) when applied to real-life networks, it always produces solutions that substantially outperform the ones obtained by previously published algorithms (for which no proof of optimality or performance guarantee is known in any class of graphs).
File in questo prodotto:
File Dimensione Formato  
Algorithmica-VQR.pdf

accesso aperto

Tipologia: Documento in Post-print (versione successiva alla peer review e accettata per la pubblicazione)
Licenza: Creative commons
Dimensione 291.94 kB
Formato Adobe PDF
291.94 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11386/4701929
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 19
  • ???jsp.display-item.citation.isi??? 13
social impact