Density functional theory calculation was conducted to determine the optoelectronic properties of bismuth titanate sillenite (Bi12TiO20) and perovskite-like (Bi4Ti3O12) structures. The lattice parameters were experimentally obtained from Rietveld analysis. The density functional perturbation theory approach was used with the standard Perdew-Burke-Ernzerhof functional and screened Coulomb hybrid Heyd-Scuseria-Ernzerhof functional to investigate the electronic structure and absorption coefficient. Both compounds have good carrier transport properties, low effective hole and electron masses, high dielectric constant, and low exciton binding energy.

Determination of the electronic, dielectric, and optical properties of sillenite Bi12TiO20and perovskite-like Bi4Ti3O12materials from hybrid first-principle calculations

Cavallo, Luigi;
2016-01-01

Abstract

Density functional theory calculation was conducted to determine the optoelectronic properties of bismuth titanate sillenite (Bi12TiO20) and perovskite-like (Bi4Ti3O12) structures. The lattice parameters were experimentally obtained from Rietveld analysis. The density functional perturbation theory approach was used with the standard Perdew-Burke-Ernzerhof functional and screened Coulomb hybrid Heyd-Scuseria-Ernzerhof functional to investigate the electronic structure and absorption coefficient. Both compounds have good carrier transport properties, low effective hole and electron masses, high dielectric constant, and low exciton binding energy.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11386/4702017
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 43
  • ???jsp.display-item.citation.isi??? 41
social impact