The robust improper maximum likelihood estimator (RIMLE) is a new method for robust multivariate clustering finding approximately Gaussian clusters. It maximizes a pseudo-likelihood defined by adding a component with improper constant density for accommodating outliers to a Gaussian mixture. A special case of the RIMLE is MLE for multi-variate finite Gaussian mixture models. In this paper we treat existence, consistency, and breakdown theory for the RIMLE comprehensively. RIMLE's existence is proved under non-smooth covariance matrix constraints. It is shown that these can be implemented via a computationally feasible Expectation-Conditional Maximization algorithm.

Consistency, Breakdown Robustness, and Algorithms for Robust Improper Maximum Likelihood Clustering

Pietro Coretto
;
2017

Abstract

The robust improper maximum likelihood estimator (RIMLE) is a new method for robust multivariate clustering finding approximately Gaussian clusters. It maximizes a pseudo-likelihood defined by adding a component with improper constant density for accommodating outliers to a Gaussian mixture. A special case of the RIMLE is MLE for multi-variate finite Gaussian mixture models. In this paper we treat existence, consistency, and breakdown theory for the RIMLE comprehensively. RIMLE's existence is proved under non-smooth covariance matrix constraints. It is shown that these can be implemented via a computationally feasible Expectation-Conditional Maximization algorithm.
File in questo prodotto:
File Dimensione Formato  
2017_coretto_hennig_consistency_breakdown_robustness_and_algorithms_for_robust_improper_maximum_likelihood_clustering.pdf

non disponibili

Tipologia: Documento in Post-print (versione successiva alla peer review e accettata per la pubblicazione)
Licenza: DRM non definito
Dimensione 510.03 kB
Formato Adobe PDF
510.03 kB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11386/4702207
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 23
  • ???jsp.display-item.citation.isi??? 19
social impact