A Fokker-Planck control strategy for collective motion is investigated. This strategy is formulated as the minimisation of an expectation objective with a bilinear optimal control problem governed by the Fokker-Planck equation modelling the evolution of the probability density function of the stochastic motion. Theoretical results on existence and regularity of optimal controls are provided. The resulting optimality system is discretized using an alternate-direction implicit Chang-Cooper scheme that guarantees conservativeness, positivity, (Formula presented.) stability, and second-order accuracy of the forward solution. A projected non-linear conjugate gradient scheme is used to solve the optimality system. Results of numerical experiments validate the theoretical accuracy estimates and demonstrate the efficiency of the proposed control framework.

A Fokker-Planck approach to control collective motion

Annunziato, Mario
Writing – Original Draft Preparation
;
2017-01-01

Abstract

A Fokker-Planck control strategy for collective motion is investigated. This strategy is formulated as the minimisation of an expectation objective with a bilinear optimal control problem governed by the Fokker-Planck equation modelling the evolution of the probability density function of the stochastic motion. Theoretical results on existence and regularity of optimal controls are provided. The resulting optimality system is discretized using an alternate-direction implicit Chang-Cooper scheme that guarantees conservativeness, positivity, (Formula presented.) stability, and second-order accuracy of the forward solution. A projected non-linear conjugate gradient scheme is used to solve the optimality system. Results of numerical experiments validate the theoretical accuracy estimates and demonstrate the efficiency of the proposed control framework.
File in questo prodotto:
File Dimensione Formato  
FPCollectiveMotRev.pdf

accesso aperto

Descrizione: Articolo post-print
Tipologia: Documento in Post-print (versione successiva alla peer review e accettata per la pubblicazione)
Licenza: Creative commons
Dimensione 1.35 MB
Formato Adobe PDF
1.35 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11386/4702566
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 30
  • ???jsp.display-item.citation.isi??? 25
social impact