The contour method is one of the newest techniques for obtaining residual stress fields from friction stir welded (FSW) parts, experimentally. This method has many advantages; however, edge effects coming from the process itself might introduce artifacts in the obtained results, and this was slightly touched upon in the very first paper on the method. This concern is further assessed in the present work, where the contour method is compared with the results that were obtained numerically via a thermomechanical model and experimentally via the cut-compliance method. For the two-dimensional (2-D) cross sectional map obtained by the method, peak stresses in tension are observed in the mid-section of the FSW butt-welded plates at the distance of the tool radius from the centerline. The corresponding numerical simulation indicates the same behavior because of the particular clamping conditions, and consequently this should not be interpreted as a misleading result of the contour method. Edge effects from the cutting process involved in the contour method should, however, be taken into consideration, most likely resulting in the residual stresses observed near the surfaces of the cross section being less extreme in reality than observed.

Assessment of the contour method for 2-D cross sectional residual stress measurements of friction stir welded parts of AA2024-T3—numerical and experimental comparison

Pierpaolo Carlone
Membro del Collaboration Group
;
2017

Abstract

The contour method is one of the newest techniques for obtaining residual stress fields from friction stir welded (FSW) parts, experimentally. This method has many advantages; however, edge effects coming from the process itself might introduce artifacts in the obtained results, and this was slightly touched upon in the very first paper on the method. This concern is further assessed in the present work, where the contour method is compared with the results that were obtained numerically via a thermomechanical model and experimentally via the cut-compliance method. For the two-dimensional (2-D) cross sectional map obtained by the method, peak stresses in tension are observed in the mid-section of the FSW butt-welded plates at the distance of the tool radius from the centerline. The corresponding numerical simulation indicates the same behavior because of the particular clamping conditions, and consequently this should not be interpreted as a misleading result of the contour method. Edge effects from the cutting process involved in the contour method should, however, be taken into consideration, most likely resulting in the residual stresses observed near the surfaces of the cross section being less extreme in reality than observed.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: http://hdl.handle.net/11386/4703031
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 4
  • ???jsp.display-item.citation.isi??? 4
social impact