We prove that a residually finite group G satisfying an identity w ≡ 1 and generated by a commutator closed set X of bounded left Engel elements is locally nilpotent. We also extend such a result to locally graded groups, provided that X is a normal set. As an immediate consequence, we obtain that a locally graded group satisfying an identity, all of whose elements are bounded left Engel, is locally nilpotent.

Bounded Engel elements in groups satisfying an identity

A. Tortora;M. Tota
2018-01-01

Abstract

We prove that a residually finite group G satisfying an identity w ≡ 1 and generated by a commutator closed set X of bounded left Engel elements is locally nilpotent. We also extend such a result to locally graded groups, provided that X is a normal set. As an immediate consequence, we obtain that a locally graded group satisfying an identity, all of whose elements are bounded left Engel, is locally nilpotent.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11386/4705026
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 5
  • ???jsp.display-item.citation.isi??? 5
social impact