The subject of repairing Ni-based parts with state-of-the-art technologies is increasingly addressed both for research and industrial purposes, aiming to cost saving mainly in aerospace and automotive. In this frame, laser-aided Directed Metal Deposition (DMD) with injection of powder is investigated in this paper since minimal distortion of the work-piece, reduced heat-affected zones and better surface quality are benefited in comparison with conventional techniques. Actual application to overhaul Ni-based components is aimed, therefore homologous powder is fed by means of a 3-way feeding nozzle over the substrate; a disc laser is used as heat source. The chemical composition of both the substrate and the powder is preliminarily investigated via areal and punctual EDS inspections. A 2-factor, 2-level experimental plan is drawn to discuss the main effects of the processing variables laser power and processing speed. Namely, the resulting trends are given and compared with similar findings in the literature. Interestingly, dilution as a measure of metal affection is found to be lower than 25%, hence the operating window is deemed to be suitable for both repairing and fabrication of parts. Eventually, repairing by means of side overlapping and multi-level deposition traces on artificial square-shaped grooves is performed: indeed, similar slots are made before DMD to preliminarily remove any local imperfection upon improper casting of the part in the actual industrial process. Although a number of micropores are found, the process is deemed to comply with usual referred standards; in particular, a proper processing window has been found to prevent the occurrence of hot cracking which usually affects the compliance to stress.

Laser-aided Directed Metal Deposition of Ni-based superalloy powder

Caiazzo, Fabrizia
2018-01-01

Abstract

The subject of repairing Ni-based parts with state-of-the-art technologies is increasingly addressed both for research and industrial purposes, aiming to cost saving mainly in aerospace and automotive. In this frame, laser-aided Directed Metal Deposition (DMD) with injection of powder is investigated in this paper since minimal distortion of the work-piece, reduced heat-affected zones and better surface quality are benefited in comparison with conventional techniques. Actual application to overhaul Ni-based components is aimed, therefore homologous powder is fed by means of a 3-way feeding nozzle over the substrate; a disc laser is used as heat source. The chemical composition of both the substrate and the powder is preliminarily investigated via areal and punctual EDS inspections. A 2-factor, 2-level experimental plan is drawn to discuss the main effects of the processing variables laser power and processing speed. Namely, the resulting trends are given and compared with similar findings in the literature. Interestingly, dilution as a measure of metal affection is found to be lower than 25%, hence the operating window is deemed to be suitable for both repairing and fabrication of parts. Eventually, repairing by means of side overlapping and multi-level deposition traces on artificial square-shaped grooves is performed: indeed, similar slots are made before DMD to preliminarily remove any local imperfection upon improper casting of the part in the actual industrial process. Although a number of micropores are found, the process is deemed to comply with usual referred standards; in particular, a proper processing window has been found to prevent the occurrence of hot cracking which usually affects the compliance to stress.
File in questo prodotto:
File Dimensione Formato  
55 Caiazzo Definitivo.pdf

accesso aperto

Tipologia: Versione editoriale (versione pubblicata con il layout dell'editore)
Licenza: Creative commons
Dimensione 1.47 MB
Formato Adobe PDF
1.47 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11386/4705199
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 39
  • ???jsp.display-item.citation.isi??? 34
social impact