Polymer composites have certain advantages over metals in terms of mechanical as well as metallurgical properties. These can be joined with similar as well as dissimilar polymer composites (subject to certain conditions like glass transition temperature, rheological properties etc.). In last 20-25 years number of techniques and concepts has been developed to offer the possibility of joining of polymeric materials which have similar or dissimilar characteristics. In present scenario mechanical fastening and adhesive bonding is replaced by applying welding concepts like: laser transmission welding, friction stir welding (FSW), ultrasonic welding, hot fusion resistance welding etc. The FSW is one of the most acceptable welding techniques for production of structural/industrial components. In this present work, requirements of FSW and its process capability has been highlighted for joining of similar/dissimilar polymeric materials for future prospective.

Weldability of thermoplastic materials for friction stir welding- A state of art review and future applications

Penna, Rosa;Feo, Luciano
2018-01-01

Abstract

Polymer composites have certain advantages over metals in terms of mechanical as well as metallurgical properties. These can be joined with similar as well as dissimilar polymer composites (subject to certain conditions like glass transition temperature, rheological properties etc.). In last 20-25 years number of techniques and concepts has been developed to offer the possibility of joining of polymeric materials which have similar or dissimilar characteristics. In present scenario mechanical fastening and adhesive bonding is replaced by applying welding concepts like: laser transmission welding, friction stir welding (FSW), ultrasonic welding, hot fusion resistance welding etc. The FSW is one of the most acceptable welding techniques for production of structural/industrial components. In this present work, requirements of FSW and its process capability has been highlighted for joining of similar/dissimilar polymeric materials for future prospective.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11386/4706498
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 122
  • ???jsp.display-item.citation.isi??? 93
social impact