We report the electrical characterization and field emission properties of MoS2 bilayers deposited on a SiO2/Si substrate. Current–voltage characteristics are measured in the back-gate transistor configuration, with Ti contacts patterned by electron beam lithography. We confirm the n-type character of as-grown MoS2 and we report normally-on field-effect transistors. Local characterization of field emission is performed inside a scanning electron microscope chamber with piezo-controlled tungsten tips working as the anode and the cathode. We demonstrate that an electric field of ~200 V/μm is able to extract current from the flat part of MoS2 bilayers, which can therefore be conveniently exploited for field emission applications even in low field enhancement configurations. We show that a Fowler–Nordheim model, modified to account for electron confinement in two-dimensional (2D) materials, fully describes the emission process.
Transport and Field Emission Properties of MoS2 Bilayers
URBAN, FRANCESCAWriting – Original Draft Preparation
;Passacantando, MaurizioFormal Analysis
;Giubileo, FilippoFormal Analysis
;Iemmo, LauraMembro del Collaboration Group
;Di Bartolomeo, Antonio
Writing – Review & Editing
2018-01-01
Abstract
We report the electrical characterization and field emission properties of MoS2 bilayers deposited on a SiO2/Si substrate. Current–voltage characteristics are measured in the back-gate transistor configuration, with Ti contacts patterned by electron beam lithography. We confirm the n-type character of as-grown MoS2 and we report normally-on field-effect transistors. Local characterization of field emission is performed inside a scanning electron microscope chamber with piezo-controlled tungsten tips working as the anode and the cathode. We demonstrate that an electric field of ~200 V/μm is able to extract current from the flat part of MoS2 bilayers, which can therefore be conveniently exploited for field emission applications even in low field enhancement configurations. We show that a Fowler–Nordheim model, modified to account for electron confinement in two-dimensional (2D) materials, fully describes the emission process.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.