We study measures defined on effect algebras. We characterize real-valued measures on effect algebras and find a class of effect algebras, that include the natural effect algebras of sets, on which σ-additive measures with values in a finite dimensional Banach space are always bounded. We also prove that in effect algebras the Nikodym and the Grothendieck properties together imply the Vitali-Hahn-Saks property, and find an example of an effect algebra verifying the Vitali-Hahn-Saks property but failing to have the Nikodym property. Finally, we define the concept of variation for vector measures on effect algebras proving that in effect algebras verifying the Riesz Decomposition Property, the variation of a finitely additive vector measure is a finitely additive positive measure.

Measures on effect algebras

Giuseppina Gerarda Barbieri
;
2019-01-01

Abstract

We study measures defined on effect algebras. We characterize real-valued measures on effect algebras and find a class of effect algebras, that include the natural effect algebras of sets, on which σ-additive measures with values in a finite dimensional Banach space are always bounded. We also prove that in effect algebras the Nikodym and the Grothendieck properties together imply the Vitali-Hahn-Saks property, and find an example of an effect algebra verifying the Vitali-Hahn-Saks property but failing to have the Nikodym property. Finally, we define the concept of variation for vector measures on effect algebras proving that in effect algebras verifying the Riesz Decomposition Property, the variation of a finitely additive vector measure is a finitely additive positive measure.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11386/4707978
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 2
  • ???jsp.display-item.citation.isi??? 1
social impact