Hydrogels are materials widely used in countless applications, particularly in the biomedical, pharmaceutical, and nutraceutical fields, because of their biocompatibility and their mechanical and transport properties. Several approaches are known to evaluate their properties, but only a few approaches are under development to mathematically describe their behaviour, in terms of how the materials answer to mechanical stimuli and how incorporated active substances are released. In this review, the main properties of hydrogels are summarized and the structure-property relationships are investigated (i.e. how the macromolecular structure influences the properties of macroscopic samples made of hydrogels). A selection criterion is proposed based on the comparison of three characteristic times: relaxation time, diffusion time, and process time. Then, the most common experimental methods to investigate the hydrogel properties are summarized, along with the state-of-the-art of mathematical modelling, with reference to the mechanical and transport properties of hydrogels, with particular attention to the viscoelastic and poroelastic behaviours. Last but not least, some case histories which can be classified as viscoelastic, poroelastic, or poroviscoelastic behaviours are presented.

Hydrogels: Experimental characterization and mathematical modelling of their mechanical and diffusive behaviour

Caccavo, D.;Cascone, S.;Lamberti, G.
;
Barba, A. A.
2018-01-01

Abstract

Hydrogels are materials widely used in countless applications, particularly in the biomedical, pharmaceutical, and nutraceutical fields, because of their biocompatibility and their mechanical and transport properties. Several approaches are known to evaluate their properties, but only a few approaches are under development to mathematically describe their behaviour, in terms of how the materials answer to mechanical stimuli and how incorporated active substances are released. In this review, the main properties of hydrogels are summarized and the structure-property relationships are investigated (i.e. how the macromolecular structure influences the properties of macroscopic samples made of hydrogels). A selection criterion is proposed based on the comparison of three characteristic times: relaxation time, diffusion time, and process time. Then, the most common experimental methods to investigate the hydrogel properties are summarized, along with the state-of-the-art of mathematical modelling, with reference to the mechanical and transport properties of hydrogels, with particular attention to the viscoelastic and poroelastic behaviours. Last but not least, some case histories which can be classified as viscoelastic, poroelastic, or poroviscoelastic behaviours are presented.
File in questo prodotto:
File Dimensione Formato  
Caccavo et al ChemSocRev 47(7) 2357 - 2373 (2018).pdf

non disponibili

Tipologia: Versione editoriale (versione pubblicata con il layout dell'editore)
Licenza: NON PUBBLICO - Accesso privato/ristretto
Dimensione 3.97 MB
Formato Adobe PDF
3.97 MB Adobe PDF   Visualizza/Apri   Richiedi una copia
418 Lamberti Post-print.pdf

accesso aperto

Descrizione: https://dx.doi.org/10.1039/c7cs00638a
Tipologia: Documento in Post-print (versione successiva alla peer review e accettata per la pubblicazione)
Licenza: Creative commons
Dimensione 1.24 MB
Formato Adobe PDF
1.24 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11386/4712642
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? 22
  • Scopus 132
  • ???jsp.display-item.citation.isi??? 126
social impact