A smart coating exhibiting self-diagnostic capability is designed to meet industrial requirements in aeronautics. The coating made of epoxy-based carbon nanotubes (CNTs) has been applied on industrial Carbon Fiber Reinforced Plastics (CFRPs) currently employed in aeronautics. The correlations between mechanical strain and electrical properties of coated CFRPs highlights the feasibility in manufacturing CFRPs having integrated high sensitivity in providing an effective real-time structural health monitoring. The reliability of the developed CFRPs, in the normal operational temperature range of aircrafts, opens new perspectives in the field of self-responsive structures in aeronautics. Self-responsive panels can simultaneously act as sensor and structural element.
Smart coatings of epoxy based CNTs designed to meet practical expectations in aeronautics
	
	
	
		
		
		
		
		
	
	
	
	
	
	
	
	
		
		
		
		
		
			
			
			
		
		
		
		
			
			
				
				
					
					
					
					
						
							
						
						
					
				
				
				
				
				
				
				
				
				
				
				
			
			
		
			
			
				
				
					
					
					
					
						
							
						
						
					
				
				
				
				
				
				
				
				
				
				
				
			
			
		
			
			
				
				
					
					
					
					
						
							
						
						
					
				
				
				
				
				
				
				
				
				
				
				
			
			
		
			
			
				
				
					
					
					
					
						
							
						
						
					
				
				
				
				
				
				
				
				
				
				
				
			
			
		
			
			
				
				
					
					
					
					
						
						
							
							
						
					
				
				
				
				
				
				
				
				
				
				
				
			
			
		
			
			
				
				
					
					
					
					
						
						
							
							
						
					
				
				
				
				
				
				
				
				
				
				
				
			
			
		
			
			
				
				
					
					
					
					
						
						
							
							
						
					
				
				
				
				
				
				
				
				
				
				
				
			
			
		
		
		
		
	
Vertuccio, L.
;Guadagno, L.
;Spinelli, G.;Lamberti, P.;
	
		
		
	
			2018
Abstract
A smart coating exhibiting self-diagnostic capability is designed to meet industrial requirements in aeronautics. The coating made of epoxy-based carbon nanotubes (CNTs) has been applied on industrial Carbon Fiber Reinforced Plastics (CFRPs) currently employed in aeronautics. The correlations between mechanical strain and electrical properties of coated CFRPs highlights the feasibility in manufacturing CFRPs having integrated high sensitivity in providing an effective real-time structural health monitoring. The reliability of the developed CFRPs, in the normal operational temperature range of aircrafts, opens new perspectives in the field of self-responsive structures in aeronautics. Self-responsive panels can simultaneously act as sensor and structural element.| File | Dimensione | Formato | |
|---|---|---|---|
| 
									
										
										
										
										
											
												
												
												    
												
											
										
									
									
										
										
											Smart 2018.pdf
										
																				
									
										
											 non disponibili 
											Descrizione: file in pdf
										 
									
									
									
										
											Tipologia:
											Versione editoriale (versione pubblicata con il layout dell'editore)
										 
									
									
									
									
										
											Licenza:
											
											
												NON PUBBLICO - Accesso privato/ristretto
												
												
												
											
										 
									
									
										Dimensione
										1.61 MB
									 
									
										Formato
										Adobe PDF
									 
										
										
								 | 
								1.61 MB | Adobe PDF | Visualizza/Apri Richiedi una copia | 
| 
									
										
										
										
										
											
												
												
												    
												
											
										
									
									
										
										
											322 GUADAGNO Pre-print.pdf
										
																				
									
										
											 accesso aperto 
											Descrizione: https://dx.doi.org/10.1016/j.compositesb.2018.04.027
										 
									
									
									
										
											Tipologia:
											Documento in Pre-print (manoscritto inviato all'editore, precedente alla peer review)
										 
									
									
									
									
										
											Licenza:
											
											
												Creative commons
												
												
													
													
													
												
												
											
										 
									
									
										Dimensione
										521.66 kB
									 
									
										Formato
										Adobe PDF
									 
										
										
								 | 
								521.66 kB | Adobe PDF | Visualizza/Apri | 
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.


