We consider a time-non-homogeneous double-ended queue subject to catastrophes and repairs. The catastrophes occur according to a non-homogeneous Poisson process and lead the system into a state of failure. Instantaneously, the system is put under repair, such that repair time is governed by a time-varying intensity function. We analyze the transient and the asymptotic behavior of the queueing system. Moreover, we derive a heavy-traffic approximation that allows approximating the state of the systems by a time-non-homogeneous Wiener process subject to jumps to a spurious state (due to catastrophes) and random returns to the zero state (due to repairs). Special attention is devoted to the case of periodic catastrophe and repair intensity functions. The first-passage-time problem through constant levels is also treated both for the queueing model and the approximating diffusion process. Finally, the goodness of the diffusive approximating procedure is discussed.
A Time-Non-Homogeneous Double-Ended Queue with Failures and Repairs and Its Continuous Approximation
	
	
	
		
		
		
		
		
	
	
	
	
	
	
	
	
		
		
		
		
		
			
			
			
		
		
		
		
			
			
				
				
					
					
					
					
						
							
						
						
					
				
				
				
				
				
				
				
				
				
				
				
			
			
		
			
			
				
				
					
					
					
					
						
							
						
						
					
				
				
				
				
				
				
				
				
				
				
				
			
			
		
			
			
				
				
					
					
					
					
						
						
							
							
						
					
				
				
				
				
				
				
				
				
				
				
				
			
			
		
			
			
				
				
					
					
					
					
						
							
						
						
					
				
				
				
				
				
				
				
				
				
				
				
			
			
		
		
		
		
	
Di Crescenzo, Antonio;Giorno, Virginia;Nobile, Amelia G.
	
		
		
	
			2018
Abstract
We consider a time-non-homogeneous double-ended queue subject to catastrophes and repairs. The catastrophes occur according to a non-homogeneous Poisson process and lead the system into a state of failure. Instantaneously, the system is put under repair, such that repair time is governed by a time-varying intensity function. We analyze the transient and the asymptotic behavior of the queueing system. Moreover, we derive a heavy-traffic approximation that allows approximating the state of the systems by a time-non-homogeneous Wiener process subject to jumps to a spurious state (due to catastrophes) and random returns to the zero state (due to repairs). Special attention is devoted to the case of periodic catastrophe and repair intensity functions. The first-passage-time problem through constant levels is also treated both for the queueing model and the approximating diffusion process. Finally, the goodness of the diffusive approximating procedure is discussed.| File | Dimensione | Formato | |
|---|---|---|---|
| mathematics-06-00081.pdf accesso aperto 
											Tipologia:
											Documento in Post-print (versione successiva alla peer review e accettata per la pubblicazione)
										 
											Licenza:
											
											
												Creative commons
												
												
													
													
													
												
												
											
										 
										Dimensione
										645.54 kB
									 
										Formato
										Adobe PDF
									 | 645.54 kB | Adobe PDF | Visualizza/Apri | 
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.


