Anisotropy effects on flux pinning and flux flow are strongly effective in cuprate as well as iron-based superconductors due to their intrinsically layered crystallographic structure. However Fe(Se,Te) thin films grown on CaF2substrate result less anisotropic with respect to all the other iron based superconductors. We present the first study on the angular dependence of the flux flow instability, which occurs in the flux flow regime as a current driven transition to the normal state at the instability point (I∗, V∗) in the current-voltage characteristics. The voltage jumps are systematically investigated as a function of the temperature, the external magnetic field, and the angle between the field and the Fe(Se,Te) film. The scaling procedure based on the anisotropic Ginzburg-Landau approach is successfully applied to the observed angular dependence of the critical voltage V∗. Anyway, we find out that Fe(Se,Te) represents the case study of a layered material characterized by a weak anisotropy of its static superconducting properties, but with an increased anisotropy in its vortex dynamics due to the predominant perpendicular component of the external applied magnetic field. Indeed, I∗ shows less sensitivity to angle variations, thus being promising for high field applications.

Angular dependence of vortex instability in a layered superconductor: The case study of Fe(Se,Te) material

Leo, Antonio;Nigro, Angela;Pace, Sandro;
2018-01-01

Abstract

Anisotropy effects on flux pinning and flux flow are strongly effective in cuprate as well as iron-based superconductors due to their intrinsically layered crystallographic structure. However Fe(Se,Te) thin films grown on CaF2substrate result less anisotropic with respect to all the other iron based superconductors. We present the first study on the angular dependence of the flux flow instability, which occurs in the flux flow regime as a current driven transition to the normal state at the instability point (I∗, V∗) in the current-voltage characteristics. The voltage jumps are systematically investigated as a function of the temperature, the external magnetic field, and the angle between the field and the Fe(Se,Te) film. The scaling procedure based on the anisotropic Ginzburg-Landau approach is successfully applied to the observed angular dependence of the critical voltage V∗. Anyway, we find out that Fe(Se,Te) represents the case study of a layered material characterized by a weak anisotropy of its static superconducting properties, but with an increased anisotropy in its vortex dynamics due to the predominant perpendicular component of the external applied magnetic field. Indeed, I∗ shows less sensitivity to angle variations, thus being promising for high field applications.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11386/4714280
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? 3
  • Scopus 24
  • ???jsp.display-item.citation.isi??? 22
social impact