Missing data arise in many statistical analyses, due to faults in data acquisition, and can have a significant effect on the conclusions that can be drawn from the data. In environmental data, for example, a standard approach usually adopted by the Environmental Protection Agencies to handle missing values is by deleting those observations with incomplete information from the study, obtaining a massive underestimation of many indexes usually used for evaluating air quality. In multivariate time series, moreover, it may happen that not only isolated values but also long sequences of some of the time series’ components may miss. In such cases, it is quite impossible to reconstruct the missing sequences basing on the serial dependence structure alone. In this work, we propose a new procedure that aims to reconstruct the missing sequences by exploiting the spatial correlation and the serial correlation of the multivariate time series, simultaneously. The proposed procedure is based on a spatial-dynamic model and imputes the missing values in the time series basing on a linear combination of the neighbor contemporary observations and their lagged values. It is specifically oriented to spatio-temporal data, although it is general enough to be applied to generic stationary multivariate time-series. In this paper, the procedure has been applied to the pollution data, where the problem of missing sequences is of serious concern, with remarkably satisfactory performance.

Reconstructing missing data sequences in multivariate time series: an application to environmental data

Maria Lucia Parrella
Membro del Collaboration Group
;
Giuseppina Albano
Membro del Collaboration Group
;
Michele La Rocca
Membro del Collaboration Group
;
Cira Perna
Membro del Collaboration Group
2019-01-01

Abstract

Missing data arise in many statistical analyses, due to faults in data acquisition, and can have a significant effect on the conclusions that can be drawn from the data. In environmental data, for example, a standard approach usually adopted by the Environmental Protection Agencies to handle missing values is by deleting those observations with incomplete information from the study, obtaining a massive underestimation of many indexes usually used for evaluating air quality. In multivariate time series, moreover, it may happen that not only isolated values but also long sequences of some of the time series’ components may miss. In such cases, it is quite impossible to reconstruct the missing sequences basing on the serial dependence structure alone. In this work, we propose a new procedure that aims to reconstruct the missing sequences by exploiting the spatial correlation and the serial correlation of the multivariate time series, simultaneously. The proposed procedure is based on a spatial-dynamic model and imputes the missing values in the time series basing on a linear combination of the neighbor contemporary observations and their lagged values. It is specifically oriented to spatio-temporal data, although it is general enough to be applied to generic stationary multivariate time-series. In this paper, the procedure has been applied to the pollution data, where the problem of missing sequences is of serious concern, with remarkably satisfactory performance.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11386/4714872
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 8
  • ???jsp.display-item.citation.isi??? 6
social impact