The vacuum solution of Einstein’s theory of general relativity provides a rotating metric with a ring singularity, which is covered by the inner and outer horizons and an ergo region. In this paper, we will discuss how ghost-free, quadratic curvature, infinite derivative gravity (IDG) may resolve the ring singularity. In IDG the nonlocality of the gravitational interaction can smear out the delta-Dirac source distribution by making the metric potential finite everywhere including at r=0. We show that the same feature also holds for a rotating metric. We can resolve the ring singularity such that no horizons are formed in the linear regime by smearing out a delta-source distribution on a ring. We will also show that the Kerr metric does not solve the full nonlinear equations of motion of ghost-free quadratic curvature IDG.

Towards nonsingular rotating compact object in ghost-free infinite derivative gravity

BUONINFANTE, LUCA;Lambiase, Gaetano
;
Mazumdar, Anupam
2018-01-01

Abstract

The vacuum solution of Einstein’s theory of general relativity provides a rotating metric with a ring singularity, which is covered by the inner and outer horizons and an ergo region. In this paper, we will discuss how ghost-free, quadratic curvature, infinite derivative gravity (IDG) may resolve the ring singularity. In IDG the nonlocality of the gravitational interaction can smear out the delta-Dirac source distribution by making the metric potential finite everywhere including at r=0. We show that the same feature also holds for a rotating metric. We can resolve the ring singularity such that no horizons are formed in the linear regime by smearing out a delta-source distribution on a ring. We will also show that the Kerr metric does not solve the full nonlinear equations of motion of ghost-free quadratic curvature IDG.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11386/4717752
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 56
  • ???jsp.display-item.citation.isi??? 55
social impact