This paper concerns the diffraction phenomenon originated by a uniform plane wave impacting an arbitrary-angled lossless dielectric wedge with planar surfaces. The high-frequency diffraction coefficients are obtained by performing uniform asymptotic evaluations of the radiation integrals resulting from the physical optics approximation of the electric and magnetic equivalent surface currents located on the inner and outer faces of the wedge. The final expressions are in closed form and contain the standard transition function of the uniform theory of diffraction and the Fresnel reflection and transmission coefficients related to the geometrical optics propagation mechanisms. Moreover, they allow a simple physical interpretation of each contribution and they are easy to use and to implement in a computer code. The knowledge of such diffraction coefficients in the frequency domain permits to apply the inverse Laplace transform to obtain the time-domain counterparts, which enable the evaluation of the transient diffracted field originated by an arbitrary function plane wave.
Plane Wave Diffraction by Arbitrary-Angled Lossless Wedges: High-Frequency and Time-Domain Solutions
	
	
	
		
		
		
		
		
	
	
	
	
	
	
	
	
		
		
		
		
		
			
			
			
		
		
		
		
			
			
				
				
					
					
					
					
						
						
							
							
						
					
				
				
				
				
				
				
				
				
				
				
				
			
			
		
			
			
				
				
					
					
					
					
						
						
							
							
						
					
				
				
				
				
				
				
				
				
				
				
				
			
			
		
			
			
				
				
					
					
					
					
						
							
						
						
					
				
				
				
				
				
				
				
				
				
				
				
			
			
		
		
		
		
	
Riccio, Giovanni
	
		
		
	
			2018
Abstract
This paper concerns the diffraction phenomenon originated by a uniform plane wave impacting an arbitrary-angled lossless dielectric wedge with planar surfaces. The high-frequency diffraction coefficients are obtained by performing uniform asymptotic evaluations of the radiation integrals resulting from the physical optics approximation of the electric and magnetic equivalent surface currents located on the inner and outer faces of the wedge. The final expressions are in closed form and contain the standard transition function of the uniform theory of diffraction and the Fresnel reflection and transmission coefficients related to the geometrical optics propagation mechanisms. Moreover, they allow a simple physical interpretation of each contribution and they are easy to use and to implement in a computer code. The knowledge of such diffraction coefficients in the frequency domain permits to apply the inverse Laplace transform to obtain the time-domain counterparts, which enable the evaluation of the transient diffracted field originated by an arbitrary function plane wave.| File | Dimensione | Formato | |
|---|---|---|---|
| Final version TAP1.pdf accesso aperto 
											Tipologia:
											Documento in Post-print (versione successiva alla peer review e accettata per la pubblicazione)
										 
											Licenza:
											
											
												DRM non definito
												
												
												
											
										 
										Dimensione
										3.48 MB
									 
										Formato
										Adobe PDF
									 | 3.48 MB | Adobe PDF | Visualizza/Apri | 
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.


