Butyric acid (BA) has been reported to induce anticancer effects on hepatocellular carcinoma (HCC) cells both in vitro and in vivo. However, its delivery and release in cancer tissues must be optimized. On the basis of these requirements, we prepared liposomes coated with chitosan and uncoated liposomes and both types were loaded with BA through a thin-film hydration method. The liposomes coated or uncoated with chitosan had a mean hydrodynamic size of 83.5 and 110.3 nm, respectively, with a homogeneous size distribution of the particles. For evaluation of the biological effects of the nanoformulations, the hepatoblastoma (HB) HepG2 cell line was utilized. BA-loaded liposomes coated with chitosan showed a considerable higher cytotoxicity than both uncoated liposomes and free BA, with IC50 values, after 72 h of incubation, of 7.5, 2.5 and 1.6 mM, respectively. Treatment of HepG2 cells for 5 h with the BA-loaded liposomes coated with chitosan at 5 mM lowered the extent of the increase in IL-8, IL-6, TNF-α and TGF-β expression of approximately 64, 58, 85 and 73.8%, respectively, when compared to the untreated cells. The BA-loaded liposomes coated with chitosan had marked capacity to be internalized in human HB cells showing an increased cytotoxic activity when compared with free BA and important anti-inflammatory effects by inhibiting production of cytokines with a central role in liver cell survival.

Chitosan-coated liposomes loaded with butyric acid demonstrate anticancer and anti-inflammatory activity in human hepatoma HepG2 cells

Masarone, Mario
Writing – Original Draft Preparation
;
Persico, Marcello
Writing – Review & Editing
2019-01-01

Abstract

Butyric acid (BA) has been reported to induce anticancer effects on hepatocellular carcinoma (HCC) cells both in vitro and in vivo. However, its delivery and release in cancer tissues must be optimized. On the basis of these requirements, we prepared liposomes coated with chitosan and uncoated liposomes and both types were loaded with BA through a thin-film hydration method. The liposomes coated or uncoated with chitosan had a mean hydrodynamic size of 83.5 and 110.3 nm, respectively, with a homogeneous size distribution of the particles. For evaluation of the biological effects of the nanoformulations, the hepatoblastoma (HB) HepG2 cell line was utilized. BA-loaded liposomes coated with chitosan showed a considerable higher cytotoxicity than both uncoated liposomes and free BA, with IC50 values, after 72 h of incubation, of 7.5, 2.5 and 1.6 mM, respectively. Treatment of HepG2 cells for 5 h with the BA-loaded liposomes coated with chitosan at 5 mM lowered the extent of the increase in IL-8, IL-6, TNF-α and TGF-β expression of approximately 64, 58, 85 and 73.8%, respectively, when compared to the untreated cells. The BA-loaded liposomes coated with chitosan had marked capacity to be internalized in human HB cells showing an increased cytotoxic activity when compared with free BA and important anti-inflammatory effects by inhibiting production of cytokines with a central role in liver cell survival.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11386/4719915
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? 15
  • Scopus 43
  • ???jsp.display-item.citation.isi??? 36
social impact