BACKGROUND: One of the main concerns of the modern medicine is the frightening spread of antimicrobial resistance caused mainly by the misuse of antibiotics. The researchers worldwide are actively involved in the search for new classes of antibiotics, and for the modification of known molecules in order to face this threatening problem. We have applied a computational approach to predict the interactions between a new cephalosporin derivative containing an additional β-lactam ring with different substituents, and several serine β-lactamases representative of the different classes of this family of enzymes. RESULTS: The results of the simulations, performed by using a covalent docking approach, has shown that this compound, although able to bind the selected β-lactamases, has a different predicted binding score for the two β-lactam rings, suggesting that one of them could be more resistant to the attack of these enzymes and stay available to perform its bactericidal activity. CONCLUSIONS: The detailed analysis of the complexes obtained by these simulations suggests possible hints to modulate the affinity of this compound towards these enzymes, in order to develop new derivatives with improved features to escape to degradation.
Computational analysis of the interactions of a novel cephalosporin derivative with β-lactamases
VERDINO, ANNAFormal Analysis
;De Rosa MMembro del Collaboration Group
;Soriente AMembro del Collaboration Group
;Marabotti A
Supervision
2018
Abstract
BACKGROUND: One of the main concerns of the modern medicine is the frightening spread of antimicrobial resistance caused mainly by the misuse of antibiotics. The researchers worldwide are actively involved in the search for new classes of antibiotics, and for the modification of known molecules in order to face this threatening problem. We have applied a computational approach to predict the interactions between a new cephalosporin derivative containing an additional β-lactam ring with different substituents, and several serine β-lactamases representative of the different classes of this family of enzymes. RESULTS: The results of the simulations, performed by using a covalent docking approach, has shown that this compound, although able to bind the selected β-lactamases, has a different predicted binding score for the two β-lactam rings, suggesting that one of them could be more resistant to the attack of these enzymes and stay available to perform its bactericidal activity. CONCLUSIONS: The detailed analysis of the complexes obtained by these simulations suggests possible hints to modulate the affinity of this compound towards these enzymes, in order to develop new derivatives with improved features to escape to degradation.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.