This work addresses FEM-based numerical simulations of fatigue crack propagation in a cruciform specimen under biaxial loading and small scale yielding (SSY) conditions. Three non-linear models are used as fatigue crack propagation laws. The cruciform specimens are made of aluminium alloy D16T and modelled with non-linear material properties. In the experimental tests, starting from a surface flow mechanically created in the centre of the cruciform specimen, biaxial loading conditions are applied to create various pre-cracked configurations that correspond to different values of initial crack aspect ratios. In the numerical simulations, the material behaviour is modelled with a low hardening bilinear law. Each simulation is carried out with one of the established non-linear laws. At the end of the fatigue crack propagation simulations, several crack aspect ratios are obtained. Finally, these aspect ratios are compared with the corresponding experimental tests available in the literature.
Non-linear models for assessing the fatigue crack behaviour under cyclic biaxial loading in a cruciform specimen
	
	
	
		
		
		
		
		
	
	
	
	
	
	
	
	
		
		
		
		
		
			
			
			
		
		
		
		
			
			
				
				
					
					
					
					
						
							
						
						
					
				
				
				
				
				
				
				
				
				
				
				
			
			
		
			
			
				
				
					
					
					
					
						
						
							
							
						
					
				
				
				
				
				
				
				
				
				
				
				
			
			
		
			
			
				
				
					
					
					
					
						
						
							
							
						
					
				
				
				
				
				
				
				
				
				
				
				
			
			
		
		
		
		
	
LEPORE, MARCELLO ANTONIO
						
						
						
							Writing – Original Draft Preparation
;
	
		
		
	
			2019
Abstract
This work addresses FEM-based numerical simulations of fatigue crack propagation in a cruciform specimen under biaxial loading and small scale yielding (SSY) conditions. Three non-linear models are used as fatigue crack propagation laws. The cruciform specimens are made of aluminium alloy D16T and modelled with non-linear material properties. In the experimental tests, starting from a surface flow mechanically created in the centre of the cruciform specimen, biaxial loading conditions are applied to create various pre-cracked configurations that correspond to different values of initial crack aspect ratios. In the numerical simulations, the material behaviour is modelled with a low hardening bilinear law. Each simulation is carried out with one of the established non-linear laws. At the end of the fatigue crack propagation simulations, several crack aspect ratios are obtained. Finally, these aspect ratios are compared with the corresponding experimental tests available in the literature.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.


