Graph Partitioning is a key challenge problem with application in many scientific and technological fields. The problem is very well studied with a rich literature and is known to be NP-hard. Several heuristic solutions, which follow diverse approaches, have been proposed, they are based on different initial assumptions that make them difficult to compare. An analytical comparison was performed based on an Implementation Challenge [3], however being a multi-objective problem (two opposing goals are for instance load balancing and edge-cut size), the results are difficult to compare and it is hard to foresee what can be the impact of one solution, instead of another, in a real scenario. In this paper we analyze the problem in a real context: the development of a distributed agent-based simulation model on a network field (which for instance can model social interactions). We present an extensive evaluation of the most efficient and effective solutions for the balanced k-way partitioning problem. We evaluate several strategies both analytically and on real distributed simulation settings (D-Mason). Results show that, a good partitioning strategy strongly influences the performances of the distributed simulation environment. Moreover, we show that there is a strong correlation between the edge-cut size and the real performances. Analyzing the results in details we were also able to discover the parameters that need to be optimized for best performances on networks in ABMs.
On evaluating graph partitioning algorithms for distributed agent based models on networks
ANTELMI, ALESSIA;Cordasco, Gennaro;Spagnuolo, Carmine;Vicidomini, Luca
2015-01-01
Abstract
Graph Partitioning is a key challenge problem with application in many scientific and technological fields. The problem is very well studied with a rich literature and is known to be NP-hard. Several heuristic solutions, which follow diverse approaches, have been proposed, they are based on different initial assumptions that make them difficult to compare. An analytical comparison was performed based on an Implementation Challenge [3], however being a multi-objective problem (two opposing goals are for instance load balancing and edge-cut size), the results are difficult to compare and it is hard to foresee what can be the impact of one solution, instead of another, in a real scenario. In this paper we analyze the problem in a real context: the development of a distributed agent-based simulation model on a network field (which for instance can model social interactions). We present an extensive evaluation of the most efficient and effective solutions for the balanced k-way partitioning problem. We evaluate several strategies both analytically and on real distributed simulation settings (D-Mason). Results show that, a good partitioning strategy strongly influences the performances of the distributed simulation environment. Moreover, we show that there is a strong correlation between the edge-cut size and the real performances. Analyzing the results in details we were also able to discover the parameters that need to be optimized for best performances on networks in ABMs.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.