The adoption of multifunctional flame-resistant composites is becoming increasingly attractive for many components of aircrafts and competition cars. Compared to conventional alloy solutions, the reduced weight and corrosion resistance are only a couple of the relevant advantages they can offer. In this paper, a carbon fiber reinforced panel (CFRP) was impregnated with an epoxy resin enhanced using a combination of 0.5 wt% of carbon nanotubes (CNTs) and 5 wt% of Glycidyl-Polyhedral Oligomeric Silsesquioxanes (GPOSS). This formulation, which is peculiar to resins with increased electrical conductivity and flame-resistance properties, has been employed for manufacturing a carbon fiber reinforced panel (CFRP) composed of eight plies through a liquid infusion technique. Vibro-acoustic tests have been performed on the panel for the characterization of the damping performance, as well the transmission loss properties related to micro-handling treatments. The spectral excitation has been provided by an acoustic source simulating the aerodynamic pressure load agent on the structure. The incorporation of multi-walled carbon nanotubes MWCNTs in the epoxy matrix determines a non-trivial improvement in the dynamic performance of the laminate. An increased damping loss factor with reference to standard CFRPlaminateandalsoanimprovementofthesoundinsulationparameterwasfoundforthespecific test article.
Multifunctional performance of a Nano-Modified fiber reinforced composite aeronautical panel
Barra, Giuseppina
;Vertuccio, Luigi;Guadagno, Liberata
2019
Abstract
The adoption of multifunctional flame-resistant composites is becoming increasingly attractive for many components of aircrafts and competition cars. Compared to conventional alloy solutions, the reduced weight and corrosion resistance are only a couple of the relevant advantages they can offer. In this paper, a carbon fiber reinforced panel (CFRP) was impregnated with an epoxy resin enhanced using a combination of 0.5 wt% of carbon nanotubes (CNTs) and 5 wt% of Glycidyl-Polyhedral Oligomeric Silsesquioxanes (GPOSS). This formulation, which is peculiar to resins with increased electrical conductivity and flame-resistance properties, has been employed for manufacturing a carbon fiber reinforced panel (CFRP) composed of eight plies through a liquid infusion technique. Vibro-acoustic tests have been performed on the panel for the characterization of the damping performance, as well the transmission loss properties related to micro-handling treatments. The spectral excitation has been provided by an acoustic source simulating the aerodynamic pressure load agent on the structure. The incorporation of multi-walled carbon nanotubes MWCNTs in the epoxy matrix determines a non-trivial improvement in the dynamic performance of the laminate. An increased damping loss factor with reference to standard CFRPlaminateandalsoanimprovementofthesoundinsulationparameterwasfoundforthespecific test article.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.