The present investigation has been undertaken to reveal the protective mechanism of polyphenolics extract of whole wheat grains (WWGPE), ferulic acid and apigenin against doxorubicin (Dox)-induced cardio-toxicity. WWGPE, apigenin, and ferulic acid exhibited concentration dependent cyto-protective effect against Dox (1 μM) in rat cardiomyocytes. Dox treatment significantly (p < 0.01) induced oxidative stress in the myocardial cells via excessive ROS production, increase in iNOS expression, NADPH oxidase activation, Nrf-2/HO-1 impairment, and inactivation of cellular redox defense system. In addition, Dox significantly (p < 0.01) activated MAP kinases, NF-κB, and apoptosis in cardiac cells; while, significant (p < 0.01) impairment in PI3K/Akt/mTOR signaling was observed in Dox-treated myocardial cells. On the other hand, WWGPE, apigenin, and ferulic acid significantly (p < 0.05–0.01) attenuated Dox-induced redox stress and oxidative stress-mediated signal transduction in myocardial cells. WWGPE, apigenin, and ferulic acid treatment also could significantly (p < 0.05–0.01) reinstate Dox-mediated changes in blood parameters in rats. Histological assessments were in agreement with the biochemical findings. Results showed that, WWGPE exhibited better cardio-protective effect over ferulic acid and apigenin, which may be due to the synergy between the comprising compounds and better oral bioavailability of dietary antioxidant molecules from whole phenolic extract.

Wheat phenolics suppress doxorubicin-induced cardiotoxicity via inhibition of oxidative stress, MAP kinase activation, NF-κB pathway, PI3K/Akt/mTOR impairment, and cardiac apoptosis

De Feo, Vincenzo
;
2019-01-01

Abstract

The present investigation has been undertaken to reveal the protective mechanism of polyphenolics extract of whole wheat grains (WWGPE), ferulic acid and apigenin against doxorubicin (Dox)-induced cardio-toxicity. WWGPE, apigenin, and ferulic acid exhibited concentration dependent cyto-protective effect against Dox (1 μM) in rat cardiomyocytes. Dox treatment significantly (p < 0.01) induced oxidative stress in the myocardial cells via excessive ROS production, increase in iNOS expression, NADPH oxidase activation, Nrf-2/HO-1 impairment, and inactivation of cellular redox defense system. In addition, Dox significantly (p < 0.01) activated MAP kinases, NF-κB, and apoptosis in cardiac cells; while, significant (p < 0.01) impairment in PI3K/Akt/mTOR signaling was observed in Dox-treated myocardial cells. On the other hand, WWGPE, apigenin, and ferulic acid significantly (p < 0.05–0.01) attenuated Dox-induced redox stress and oxidative stress-mediated signal transduction in myocardial cells. WWGPE, apigenin, and ferulic acid treatment also could significantly (p < 0.05–0.01) reinstate Dox-mediated changes in blood parameters in rats. Histological assessments were in agreement with the biochemical findings. Results showed that, WWGPE exhibited better cardio-protective effect over ferulic acid and apigenin, which may be due to the synergy between the comprising compounds and better oral bioavailability of dietary antioxidant molecules from whole phenolic extract.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11386/4722627
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? 28
  • Scopus 79
  • ???jsp.display-item.citation.isi??? 77
social impact