The principal factors that affect the characteristics of contact problem between cam and follower vary enormously during the operating cycle of this mechanism. This includes radius of curvature, surface velocities and applied load. It has been found over the last decades that the mechanism operates under an extremely thin film of lubricant. Any practical improvement in the level of film thickness that separates the contacted surfaces represents an essential step towards a satisfactory design of the system. In this paper a detailed numerical study is presented for the cam and follower (flat-faced) lubrication including the effect of introducing an axial modification (parabolic shape) of the cam depth on the levels of film thickness and pressure distribution. This is achieved based on a point contact model for a cam and flat-faced follower system. The results reveal that the cam form of modification has considerable consequences on the level of predicted film thickness and pressure distribution as well as surface deformation.

Lubrication analyses of cam and flat-faced follower

Senatore, Adolfo
Writing – Review & Editing
;
2019

Abstract

The principal factors that affect the characteristics of contact problem between cam and follower vary enormously during the operating cycle of this mechanism. This includes radius of curvature, surface velocities and applied load. It has been found over the last decades that the mechanism operates under an extremely thin film of lubricant. Any practical improvement in the level of film thickness that separates the contacted surfaces represents an essential step towards a satisfactory design of the system. In this paper a detailed numerical study is presented for the cam and follower (flat-faced) lubrication including the effect of introducing an axial modification (parabolic shape) of the cam depth on the levels of film thickness and pressure distribution. This is achieved based on a point contact model for a cam and flat-faced follower system. The results reveal that the cam form of modification has considerable consequences on the level of predicted film thickness and pressure distribution as well as surface deformation.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11386/4723211
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 16
  • ???jsp.display-item.citation.isi??? 13
social impact