Generalized contact bundles are odd dimensional analogues of generalized complex manifolds. They have been introduced recently and very little is known about them. In this paper we study their local structure. Specifically, we prove a local splitting theorem similar to those appearing in Poisson geometry. In particular, in a neighborhood of a regular point, a generalized contact bundle is either the product of a contact and a complex manifold or the product of a symplectic manifold and a manifold equipped with an integrable complex structure on the gauge algebroid of the trivial line bundle.
The Local Structure of Generalized Contact Bundles
	
	
	
		
		
		
		
		
	
	
	
	
	
	
	
	
		
		
		
		
		
			
			
			
		
		
		
		
			
			
				
				
					
					
					
					
						
							
						
						
					
				
				
				
				
				
				
				
				
				
				
				
			
			
		
			
			
				
				
					
					
					
					
						
							
						
						
					
				
				
				
				
				
				
				
				
				
				
				
			
			
		
		
		
		
	
Schnitzer, JonasMembro del Collaboration Group
;Vitagliano, Luca
						
						
						
							Membro del Collaboration Group
			2020
Abstract
Generalized contact bundles are odd dimensional analogues of generalized complex manifolds. They have been introduced recently and very little is known about them. In this paper we study their local structure. Specifically, we prove a local splitting theorem similar to those appearing in Poisson geometry. In particular, in a neighborhood of a regular point, a generalized contact bundle is either the product of a contact and a complex manifold or the product of a symplectic manifold and a manifold equipped with an integrable complex structure on the gauge algebroid of the trivial line bundle.File in questo prodotto:
	
	
	
    
	
	
	
	
	
	
	
	
		
			
				
			
		
		
	
	
	
	
		
			Non ci sono file associati a questo prodotto.
		
		
	
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.


