Generalized contact bundles are odd dimensional analogues of generalized complex manifolds. They have been introduced recently and very little is known about them. In this paper we study their local structure. Specifically, we prove a local splitting theorem similar to those appearing in Poisson geometry. In particular, in a neighborhood of a regular point, a generalized contact bundle is either the product of a contact and a complex manifold or the product of a symplectic manifold and a manifold equipped with an integrable complex structure on the gauge algebroid of the trivial line bundle.

The Local Structure of Generalized Contact Bundles

Schnitzer, Jonas
Membro del Collaboration Group
;
Vitagliano, Luca
Membro del Collaboration Group
2020

Abstract

Generalized contact bundles are odd dimensional analogues of generalized complex manifolds. They have been introduced recently and very little is known about them. In this paper we study their local structure. Specifically, we prove a local splitting theorem similar to those appearing in Poisson geometry. In particular, in a neighborhood of a regular point, a generalized contact bundle is either the product of a contact and a complex manifold or the product of a symplectic manifold and a manifold equipped with an integrable complex structure on the gauge algebroid of the trivial line bundle.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: http://hdl.handle.net/11386/4723867
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 4
  • ???jsp.display-item.citation.isi??? 3
social impact