The interactome of arzanol was investigated by MS-based chemical proteomics, a pioneering technology for small molecule target discovery. Brain glycogen phosphorylase (bGP), a key regulator of glucose metabolism so far refractory to small molecule modulation, was identified as the main high-affinity target of arzanol. Competitive affinity-based proteomics, DARTS, molecular docking, surface plasmon resonance and in vitro biological assays provided molecular mechanistic insights into the arzanol-enzyme interaction, qualifying this positive modulator of bGP for further studies in the realm of neurodegeneration and cancer.

Chemoproteomic fishing identifies arzanol as a positive modulator of brain glycogen phosphorylase

Del Gaudio, Federica;Riccio, Raffaele;Monti, Maria Chiara
2018

Abstract

The interactome of arzanol was investigated by MS-based chemical proteomics, a pioneering technology for small molecule target discovery. Brain glycogen phosphorylase (bGP), a key regulator of glucose metabolism so far refractory to small molecule modulation, was identified as the main high-affinity target of arzanol. Competitive affinity-based proteomics, DARTS, molecular docking, surface plasmon resonance and in vitro biological assays provided molecular mechanistic insights into the arzanol-enzyme interaction, qualifying this positive modulator of bGP for further studies in the realm of neurodegeneration and cancer.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11386/4724128
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? 4
  • Scopus 20
  • ???jsp.display-item.citation.isi??? 21
social impact