This study aims at elucidating the effect of three-dimensional (3D) extracellular matrix on cell behaviour and nanoparticle (NP) diffusion and its consequences on NP cellular uptake mechansims. For this purpose, human dermal fibroblasts (HDF) and human fibrosarcoma (HT1080) cell lines were grown within a 3D collagen gel and exposed to model polystyrene (PS) NPs of controlled size (44 and 100 nm). Results indicate that, in 3D, cell morphology dramatically changes compared to standard 2D cultures and NP diffusion within the matrix is hampered by the interaction with the collagen fibres. As a consequence, NP cellular uptake, modeled with equations describing the stoichiometric exchange between NPs and cell membrane, is significantly slowed down in 3D and in the case of 100 nm NPs, in part due to the hampered diffusion of NPs in collagen gel compared to their transport in standard cell culture medium. Furthermore, our outcomes point at a significant contribution of the cytoskeleton assembly, in particular actin microfilaments, in governing the uptake of PS NPs in a 3D environment, and also that the macropinocytosis process is preserved and is mainly involved in the internalization of PS NPs in a 3D environment. However, depending on cell type and nanoparticle size, other endocytic pathways are also implicated when moving from 2D to 3D culture systems. This work highlights the importance of studying the nano-bio interaction in experimental models that resembles in vivo conditions in order to better predict the therapeutic efficacy of drug delivery systems. (C) 2016 Elsevier B.V. All rights reserved.

Dynamics of nanoparticle diffusion and uptake in three-dimensional cell cultures

Guarnieri D
Supervision
;
2017-01-01

Abstract

This study aims at elucidating the effect of three-dimensional (3D) extracellular matrix on cell behaviour and nanoparticle (NP) diffusion and its consequences on NP cellular uptake mechansims. For this purpose, human dermal fibroblasts (HDF) and human fibrosarcoma (HT1080) cell lines were grown within a 3D collagen gel and exposed to model polystyrene (PS) NPs of controlled size (44 and 100 nm). Results indicate that, in 3D, cell morphology dramatically changes compared to standard 2D cultures and NP diffusion within the matrix is hampered by the interaction with the collagen fibres. As a consequence, NP cellular uptake, modeled with equations describing the stoichiometric exchange between NPs and cell membrane, is significantly slowed down in 3D and in the case of 100 nm NPs, in part due to the hampered diffusion of NPs in collagen gel compared to their transport in standard cell culture medium. Furthermore, our outcomes point at a significant contribution of the cytoskeleton assembly, in particular actin microfilaments, in governing the uptake of PS NPs in a 3D environment, and also that the macropinocytosis process is preserved and is mainly involved in the internalization of PS NPs in a 3D environment. However, depending on cell type and nanoparticle size, other endocytic pathways are also implicated when moving from 2D to 3D culture systems. This work highlights the importance of studying the nano-bio interaction in experimental models that resembles in vivo conditions in order to better predict the therapeutic efficacy of drug delivery systems. (C) 2016 Elsevier B.V. All rights reserved.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11386/4724798
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 35
  • ???jsp.display-item.citation.isi??? 32
social impact