The innate immune system consists of several complex cellular and molecular mechanisms. During inflammatory responses, blood-circulating monocytes are driven to the sites of inflammation, where they differentiate into tissue macrophages. The research of novel nanomaterials applied to biomedical sciences is often limited by their toxicity or dangerous interactions with the immune cell functions. Platinum nanoparticles (PtNPs) have shown efficient antioxidant properties within several cells, but information on their potential harmful role in the monocyte-to-macrophage differentiation process is still unknown. Here, we studied the morphology and the release of cytokines in PMA-differentiated THP-1 pre-treated with 5 nm PtNPs. Although NP endocytosis was evident, we did not find differences in the cellular structure or in the release of inflammatory cytokines and chemokines compared to cells differentiated in PtNP-free medium. However, the administration of PtNPs to previously differentiated THP-1 induced massive phagocytosis of the PtNPs and a slight metabolism decrease at higher doses. Further investigation using undifferentiated and differentiated neutrophil-like HL60 confirmed the harmlessness of PtNPs with non-adherent innate immune cells. Our results demonstrate that citrate-coated PtNPs are not toxic with these immune cell lines, and do not affect the PMA-stimulated THP-1 macrophage differentiation process in vitro.

PMA-Induced THP-1 Macrophage Differentiation is Not Impaired by Citrate-Coated Platinum Nanoparticles

Guarnieri D
Membro del Collaboration Group
;
2017-01-01

Abstract

The innate immune system consists of several complex cellular and molecular mechanisms. During inflammatory responses, blood-circulating monocytes are driven to the sites of inflammation, where they differentiate into tissue macrophages. The research of novel nanomaterials applied to biomedical sciences is often limited by their toxicity or dangerous interactions with the immune cell functions. Platinum nanoparticles (PtNPs) have shown efficient antioxidant properties within several cells, but information on their potential harmful role in the monocyte-to-macrophage differentiation process is still unknown. Here, we studied the morphology and the release of cytokines in PMA-differentiated THP-1 pre-treated with 5 nm PtNPs. Although NP endocytosis was evident, we did not find differences in the cellular structure or in the release of inflammatory cytokines and chemokines compared to cells differentiated in PtNP-free medium. However, the administration of PtNPs to previously differentiated THP-1 induced massive phagocytosis of the PtNPs and a slight metabolism decrease at higher doses. Further investigation using undifferentiated and differentiated neutrophil-like HL60 confirmed the harmlessness of PtNPs with non-adherent innate immune cells. Our results demonstrate that citrate-coated PtNPs are not toxic with these immune cell lines, and do not affect the PMA-stimulated THP-1 macrophage differentiation process in vitro.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11386/4724799
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 35
  • ???jsp.display-item.citation.isi??? 29
social impact