We study linear and quasilinear Venttsel boundary value problems involving elliptic operators with discontinuous coefficients. On the base of the a priori estimates obtained, maximal regularity and strong solvability in Sobolev spaces are proved.
Venttsel boundary value problems with discontinuous data.
DIAN K. PALAGACHEVMembro del Collaboration Group
;LYOUBOMIRA SOFTOVA
Membro del Collaboration Group
2021
Abstract
We study linear and quasilinear Venttsel boundary value problems involving elliptic operators with discontinuous coefficients. On the base of the a priori estimates obtained, maximal regularity and strong solvability in Sobolev spaces are proved.File in questo prodotto:
Non ci sono file associati a questo prodotto.
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.