Background: The integration of computer-aided design/computer-aided manufacturing (CAD/CAM) tools and medicine is rapidly developing for designing medical devices. A novel design for a 3D-printed patient-specific surgical template for thoracic pedicle screw insertion, using a procedure based on reverse engineering, is presented. Methods: The surgeon chooses the entry point on the vertebra. The optimal insertion direction and the size of the screws are defined via an algorithm on the basis of a patient-specific vertebra CAD model. The template features an innovative shape for a comfortable and univocal placement and a novel disengaging device. Results: Three spinal fusions were performed to test the template. Excellent results were achieved in terms of the accuracy of the screw positioning, reduction in surgery duration, and number of X-rays. Conclusions: A novel design for a customized, 3D-printed surgical template for thoracic spinal arthrodesis was presented, and improvements in terms of precision, duration, and safety were achieved without changing the standard procedure.

Novel design for a customized, 3D-printed surgical template for thoracic spinal arthrodesis

Naddeo F.;FONTANA, CARLOTTA;Naddeo A.;Cataldo E.;Cappetti N.;
2019-01-01

Abstract

Background: The integration of computer-aided design/computer-aided manufacturing (CAD/CAM) tools and medicine is rapidly developing for designing medical devices. A novel design for a 3D-printed patient-specific surgical template for thoracic pedicle screw insertion, using a procedure based on reverse engineering, is presented. Methods: The surgeon chooses the entry point on the vertebra. The optimal insertion direction and the size of the screws are defined via an algorithm on the basis of a patient-specific vertebra CAD model. The template features an innovative shape for a comfortable and univocal placement and a novel disengaging device. Results: Three spinal fusions were performed to test the template. Excellent results were achieved in terms of the accuracy of the screw positioning, reduction in surgery duration, and number of X-rays. Conclusions: A novel design for a customized, 3D-printed surgical template for thoracic spinal arthrodesis was presented, and improvements in terms of precision, duration, and safety were achieved without changing the standard procedure.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11386/4725210
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? 3
  • Scopus 12
  • ???jsp.display-item.citation.isi??? 8
social impact