A major issue in chemotherapy is the lack of specificity of many antitumor drugs, which cause severe side effects and an impaired therapeutic response. Here we report on the design and characterization of model tumor activated prodrug - conjugated polystyrene (PS) nanoparticles (TAP-NPs) for the release of doxorubicin (Dox) triggered by matrix metalloprotease-2 (MMP2) enzyme, which is overexpressed in the extracellular matrix of tumors. In particular, TAP NPs were produced by attaching Dox to poly(ethylene glycol) (PEG) through two MMP2-cleavable enzymes. The resulting adduct was then tethered to PS NPs. Results showed that Dox release was actually triggered by MMP2 cleavage and was dependent on enzyme concentration, with a plateau around 20 nM. Furthermore, significant cell cytotoxicity was observed towards three cell lines only in the presence of MMP2, but not in cells without enzyme pre-treatment, even after NP internalization by cells. These findings indicate the potential of TAP-NP as suitable nanocarriers for an on demand, tumor - specific delivery of antitumor drugs after the response to an endogenous stimulus. Further advancements will focus on the translation of this production technology to biodegradable systems for the safe transport of cytotoxic drug to tumor tissues.

Tumor-activated prodrug (TAP) - conjugated nanoparticles with cleavable domains for safe doxorubicin delivery

Daniela Guarnieri
Supervision
;
2015-01-01

Abstract

A major issue in chemotherapy is the lack of specificity of many antitumor drugs, which cause severe side effects and an impaired therapeutic response. Here we report on the design and characterization of model tumor activated prodrug - conjugated polystyrene (PS) nanoparticles (TAP-NPs) for the release of doxorubicin (Dox) triggered by matrix metalloprotease-2 (MMP2) enzyme, which is overexpressed in the extracellular matrix of tumors. In particular, TAP NPs were produced by attaching Dox to poly(ethylene glycol) (PEG) through two MMP2-cleavable enzymes. The resulting adduct was then tethered to PS NPs. Results showed that Dox release was actually triggered by MMP2 cleavage and was dependent on enzyme concentration, with a plateau around 20 nM. Furthermore, significant cell cytotoxicity was observed towards three cell lines only in the presence of MMP2, but not in cells without enzyme pre-treatment, even after NP internalization by cells. These findings indicate the potential of TAP-NP as suitable nanocarriers for an on demand, tumor - specific delivery of antitumor drugs after the response to an endogenous stimulus. Further advancements will focus on the translation of this production technology to biodegradable systems for the safe transport of cytotoxic drug to tumor tissues.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11386/4725356
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 27
  • ???jsp.display-item.citation.isi??? 24
social impact