This paper addresses the numerical simulation of an innovative double split Tee beam-to-column joint fitted with a dissipative friction damper, recently proposed at the University of Salerno. The innovative connection prevents damage to all other structural components with the exception of one component of the connection that is specially designed to dissipate the input energy of a seismic hazard by means of the slippage of a friction material. The main topics herein presented are the development of a strategy for the numerical modelling of complex friction problems and a detailed numerical model of the overall beam-to-column joint equipped with the friction device. The joint is subjected to both monotonic and cyclic loading conditions. The numerical modelling was developed using the Finite Elements Method (FEM) with Abaqus Software. Sliding force–displacement curves are obtained for two damper materials and an estimation of their wearing is presented. To evaluate the accuracy of the numerical model, moment–rotation curves of the joint are compared with the experimental curves. The FE results show good correlations and confirm the potential interest of this novel joint typology to achieve easily replaceable details in case of a seismic event.

Numerical modelling of innovative DST steel joint under cyclic loading

Latour M.;Rizzano G.
2018-01-01

Abstract

This paper addresses the numerical simulation of an innovative double split Tee beam-to-column joint fitted with a dissipative friction damper, recently proposed at the University of Salerno. The innovative connection prevents damage to all other structural components with the exception of one component of the connection that is specially designed to dissipate the input energy of a seismic hazard by means of the slippage of a friction material. The main topics herein presented are the development of a strategy for the numerical modelling of complex friction problems and a detailed numerical model of the overall beam-to-column joint equipped with the friction device. The joint is subjected to both monotonic and cyclic loading conditions. The numerical modelling was developed using the Finite Elements Method (FEM) with Abaqus Software. Sliding force–displacement curves are obtained for two damper materials and an estimation of their wearing is presented. To evaluate the accuracy of the numerical model, moment–rotation curves of the joint are compared with the experimental curves. The FE results show good correlations and confirm the potential interest of this novel joint typology to achieve easily replaceable details in case of a seismic event.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11386/4726800
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 32
  • ???jsp.display-item.citation.isi??? 26
social impact