We present a new procedure that takes advantage of the magnetic flux quantization of superconducting vortices to calibrate the magnetic properties of tips for magnetic force microscopy (MFM). Indeed, a superconducting vortex, whose quantized flux is dependent upon Plank constant, speed of light and electron charge, behaves as a very well defined magnetic reference object. The proposed calibration procedure has been tested on new and worn tips and shows that the monopole point-like approximation of the probe is a reliable model. This procedure has been then applied to perform quantitative MFM experiments on a soft ferromagnetic thin film of permalloy, leading to the determination of the local out-of-plane component of the canted magnetization, together with its spatial variations across a few mu m(2) scan area.
Quantitative magnetic force microscopy using calibration on superconducting flux quanta
Di Giorgio C.;Bobba F.;Cucolo A. M.
2019
Abstract
We present a new procedure that takes advantage of the magnetic flux quantization of superconducting vortices to calibrate the magnetic properties of tips for magnetic force microscopy (MFM). Indeed, a superconducting vortex, whose quantized flux is dependent upon Plank constant, speed of light and electron charge, behaves as a very well defined magnetic reference object. The proposed calibration procedure has been tested on new and worn tips and shows that the monopole point-like approximation of the probe is a reliable model. This procedure has been then applied to perform quantitative MFM experiments on a soft ferromagnetic thin film of permalloy, leading to the determination of the local out-of-plane component of the canted magnetization, together with its spatial variations across a few mu m(2) scan area.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.