From a dicyano-phenylenevinylene (PV) and an azobenzene (AB) skeleton, two new symmetrical salen dyes were obtained. Terminal bulky substituents able to reduce intermolecular interactions and flexible tails to guarantee solubility were added to the fluorogenic cores. Photochemical performances were investigated on the small molecules in solution, as neat crystals and as dopants in polymeric matrixes. High fluorescence quantum yield in the orange-red region was observed for the brightest emissive films (88% yield). The spectra of absorption and fluorescence were predicted by Density Functional Theory (DFT) calculations. The predicted energy levels of the frontier orbitals are in good agreement with voltammetry and molecular spectroscopy measures. Employing the two dyes as dopants of a nematic polymer led to remarkable orange or yellow luminescence, which dramatically decreases in on-off switch mode after liquid crystal (LC) order was lost. The fluorogenic cores were also embedded in organic polymers and self-assembly zinc coordination networks to transfer the emission properties to a macro-system. The final polymers emit from red to yellow both in solution and in the solid state and their photoluminescence (PL) performance are, in some cases, enhanced when compared to the fluorogenic cores.

The effect of bulky substituents on two π-conjugated mesogenic fluorophores. Their organic polymers and zinc-bridged luminescent networks

Concilio S.;MARRAFINO, FRANCESCO;Caruso T.;Caruso U.
2019-01-01

Abstract

From a dicyano-phenylenevinylene (PV) and an azobenzene (AB) skeleton, two new symmetrical salen dyes were obtained. Terminal bulky substituents able to reduce intermolecular interactions and flexible tails to guarantee solubility were added to the fluorogenic cores. Photochemical performances were investigated on the small molecules in solution, as neat crystals and as dopants in polymeric matrixes. High fluorescence quantum yield in the orange-red region was observed for the brightest emissive films (88% yield). The spectra of absorption and fluorescence were predicted by Density Functional Theory (DFT) calculations. The predicted energy levels of the frontier orbitals are in good agreement with voltammetry and molecular spectroscopy measures. Employing the two dyes as dopants of a nematic polymer led to remarkable orange or yellow luminescence, which dramatically decreases in on-off switch mode after liquid crystal (LC) order was lost. The fluorogenic cores were also embedded in organic polymers and self-assembly zinc coordination networks to transfer the emission properties to a macro-system. The final polymers emit from red to yellow both in solution and in the solid state and their photoluminescence (PL) performance are, in some cases, enhanced when compared to the fluorogenic cores.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11386/4729562
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? 10
  • Scopus 27
  • ???jsp.display-item.citation.isi??? 23
social impact